Continue the example last time:

\[f : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}) \]

\[f \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]

Find the eigenvalues and eigenvectors of \(f \).

We translated the problem of finding eigenvalues and eigenvectors of \(f \) to the problem of finding the eigenvalues and eigenvectors of the matrix

\[
A = [f]_B = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

We found that \(A \) has two eigenvalues \(\lambda = 1 \) and \(\lambda = -1 \).

The eigenspace of \(A \) corresponding to \(\lambda = 1 \) is

\[
\widetilde{E}_1 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}
\]

The eigenspace of \(A \) corresponding to \(\lambda = -1 \) is

\[
\widetilde{E}_{-1} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}
\]

Now we translate back to \(f \): the eigenvalues of \(f \) are \(\lambda = \pm 1 \).

The eigenspace of \(f \) corresponding to \(\lambda = 1 \) is

\[
E_1 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}
\]

because \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) is the vector in \(M_{2 \times 2}(\mathbb{R}) \) that has coordinate \(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \) with respect to basis \(\mathcal{B} \).
Similarly, the eigenspace of f corresponding to $\lambda = -1$ is
\[E_{-1} = \text{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}. \]

We have found the eigenvalues and eigenspaces of f. Our method was to translate the problem on the abstract vector space $M_{2 \times 2}(\mathbb{R})$ to a concrete vector space \mathbb{R}^4. This is done by fixing a basis of $M_{2 \times 2}(\mathbb{R})$ (we chose the standard basis) and replace abstract vectors (which are matrices in this case) by their coordinate vectors (vectors in \mathbb{R}^4).

There is another method to find the eigenvalues and eigenspaces of f which doesn't resort to coordinates. We will discuss it after the midterm.