An application of inner product is to define projections. Let V be an inner product space.

Definition:
- Two vectors u and v are said to be perpendicular (or orthogonal) to each other (denoted by $u \perp v$) if $(u, v) = 0$.
- Let $u \in V$ and E be a subspace of V. Then u is said to be perpendicular (or orthogonal) to E (denoted by $u \perp E$) if u is perpendicular to every vector in E.

This definition is quite natural. We know from geometry that a vector is said to be perpendicular to a plane if it is perpendicular to every vector on the plane. The definition we just gave is a generalization of this concept. One now can talk about a vector being orthogonal to a subspace, not just a 2D-plane.

In 3D-geometry, one can talk about orthogonal projection of a vector on a plane. We can generalize this idea as follows.

Definition:
- Vector v is said to be the orthogonal projection of u on subspace E if two following conditions are satisfied:
 1. $v \in E$,
 2. $u - v \perp E$.

The question now is how to compute the projection of u on E. In other words, given u and E, we want to solve for vector $v \in E$ such that $u - v \perp E$. We acknowledge a difficulty; it is practically
To check if a vector is perpendicular to every single vector in a vector space E, a vector space has infinitely many vectors! However, we in fact only need to check if the vector is perpendicular to every vector in a basis. The following theorem explains this idea.

Theorem:

Let V be an inner product, E be a subspace of V, and $u \in V$.

Let $\mathcal{B} = \{v_1, v_2, \ldots, v_n\}$ be a basis of E. Then $u \perp E$ if and only if $u \perp v_k$ for all $k=1,2,\ldots,n$.

Why is this true? The theorem says "if and only if". So there are two statements to check:

(a) Suppose $u \perp E$. Show that $u \perp v_k$ for all $k=1,2,\ldots,n$.

(b) Suppose $u \perp v_k$ for all $k=1,2,\ldots,n$. Show that $u \perp E$.

Part (a) is quite easy! Because $u \perp E$, u has to be perpendicular to every vector in E. Since v_1, v_2, \ldots, v_n are vectors in E, u has to be perpendicular to each of them.

Part (b) is more interesting to prove. We have

$$u \perp v_k \quad \forall k=1,2,\ldots,n.$$

We want to show $u \perp E$. That is to show $u \perp v \quad \forall v \in E$.

Let $v \in E$. We want to show $u \perp v$. That is to show $(u,v) = 0$.

Because v_1, v_2, \ldots, v_n form a basis of E, v is a linear combination of these vectors. We can write

$$v = q_1 v_1 + q_2 v_2 + \ldots + q_n v_n,$$

for some $q_1, q_2, \ldots, q_n \in \mathbb{F}$. Then

$$(u,v) = (u, q_1 v_1 + q_2 v_2 + \ldots + q_n v_n)$$

$$= (u, q_1 v_1) + (u, q_2 v_2) + \ldots + (u, q_n v_n)$$

$$= \underbrace{q_1 (u,v_1)}_{0} + \underbrace{q_2 (u,v_2)}_{0} + \ldots + \underbrace{q_n (u,v_n)}_{0} = 0.$$
Thus \((u, v) = 0\). The theorem is proven.

We return to the question we asked earlier: given a vector \(u \in V\) and a subspace \(E \subseteq V\), how do we find the projection of \(u\) onto \(E\)? Let this projection be \(v \in E\). We can write \(v\) as a linear combination of \(v_1, v_2, \ldots, v_n\):

\[
v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n.
\]

We want to solve for \(c_1, c_2, \ldots, c_n \in E\) such that \(u - v \perp E\).

The condition \(u - v \perp E\) boils down to the condition

\[
(u - v, v) = (u - v, v_1) = \ldots = (u - v, v_n) = 0.
\]

The first term is equal to

\[
(u - v, v) = (u, v) - (v, v)
\]

\[
= (u, v) - (c_1 v_1 + c_2 v_2 + \ldots + c_n v_n, v_1)
\]

\[
= (u, v) - c_1 (v_1, v_1) - c_2 (v_2, v_1) - \ldots - c_n (v_n, v_1).
\]

Since this is supposed to be zero, we get an equation

\[
g_1 (v_1, v_1) + g_2 (v_2, v_1) + \ldots + g_n (v_n, v_1) = (u, v_1),
\]

\[
\text{known} \quad \text{known} \quad \text{known} \quad \text{known}
\]

Similarly, the equation \((u - v, v_2) = 0\) gives us an equation

\[
g_1 (v_1, v_2) + g_2 (v_2, v_2) + \ldots + g_n (v_n, v_2) = (u, v_2),
\]

\[
\text{known} \quad \text{known} \quad \text{known} \quad \text{known}
\]

And so on. We eventually get a linear system of \(n\) equations and \(n\) unknowns.

If \(B\) is orthogonal, i.e., any two vectors in \(B\) are perpendicular to each other, then the first equation becomes

\[
g_1 (v_1, v_1) = (u, v_1).
\]

The second equation becomes

\[
g_2 (v_2, v_2) = (u, v_2).
\]
And so on. In this case, the system becomes trivial to solve.

Definition: A set of vectors \(\{v_1, v_2, \ldots, v_n\} \) is said to be orthogonal if any two vectors in this set are perpendicular to each other: \(v_j \perp v_k \) for any \(j \neq k \). If the set is orthogonal and \(\|v_1\| = \|v_2\| = \cdots = \|v_n\| = 1 \) then it is said to be orthonormal.

From our analysis above, if \(E \) has an orthogonal basis \(B = \{v_1, v_2, \ldots, v_n\} \) then the projection of \(u \in V \) on \(E \) is given by

\[
v = \text{proj}_E u = \frac{(u, v_1)}{\|v_1\|^2} v_1 + \frac{(u, v_2)}{\|v_2\|^2} v_2 + \cdots + \frac{(u, v_n)}{\|v_n\|^2} v_n.
\]

Note that this formula is true only if \(B \) is an orthogonal basis.

Sometimes, for convenience we write \(\text{proj}_{\{v_1, \ldots, v_n\}} u \) instead of \(\text{proj}_E u \).

The notation \(\text{proj}_{\{v_1, \ldots, v_n\}} u \) denotes the projection of vector \(u \) on the vector space spanned by \(\{v_1, \ldots, v_n\} \).

Ex: Let \(a \in V \) and \(u \in V \). What is the projection of vector \(u \) on the line that contains \(a \)?

The line is the vector space spanned by the vector \(a \). It has basis \(B = \{a\} \). This is an orthogonal basis since it contains only one element. Thus,

\[
v = \text{proj}_{\{a\}} u = \frac{(u, a)}{\|a\|^2} a.
\]