Consider the set $V = \left\{ \begin{bmatrix} a & b \\ i(ax + b) & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$.

One can see that V is a subset of $M_{2\times2}(\mathbb{C})$.

However, V is not a subspace of $M_{2\times2}(\mathbb{C})$ when viewed as a vector space over \mathbb{C}. In other words, V is not a vector space over \mathbb{C}. The reason is that V is not closed under scaling by a complex number. For example, the matrix

$$A = \begin{bmatrix} 1 & 0 \\ i & 0 \end{bmatrix}$$

belongs to V (with $a = 1$, $b = c = 0$), but the matrix

$$iA = \begin{bmatrix} i & 0 \\ -i & 0 \end{bmatrix}$$

doesn't belong to V.

Nevertheless, V is a vector space over \mathbb{R}. How so? We have a general rule as follows.

Theorem.

If V is a vector space over \mathbb{C}, then it is also a vector space over \mathbb{R} and over \mathbb{Q}. If V is a vector space over \mathbb{R}, then it is also a vector space over \mathbb{Q}. In short, if V is a vector space over a big field, then it is a vector space over smaller fields.

$$\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

We know that $M_{2\times2}(\mathbb{C})$ is a vector space over \mathbb{C}. Therefore, it is also a vector space over \mathbb{R}. One can show that V is a subspace of $M_{2\times2}(\mathbb{C})$ (when viewed as a vector space over \mathbb{R}) by checking that

1. $0 \in V$,
2. V is closed under addition,
3. V is closed under scaling (by real numbers).
What is a basis and the dimension of V?

We can rewrite V as

$$V = \{ a \begin{bmatrix} 1 & 0 \\ i & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ i & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \}$$

$$= \text{span} \left\{ \begin{bmatrix} 1 & 0 \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ i & 0 \end{bmatrix} \right\}$$

Let $B = \{ A_1, A_2, A_3 \}$. We see that $V = \text{span} B$. To say that B is a basis of V, one needs to check if B is linearly independent.

Consider the equation $c_1 A_1 + c_2 A_2 + c_3 A_3 = 0$ with unknowns $c_1, c_2, c_3 \in \mathbb{R}$.

This equation is equivalent to

$$\begin{bmatrix} c_1 & c_2 \\ i(c_1 + c_2) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus, $c_1 = c_2 = c_3 = 0$. We conclude that B is a basis of V. Moreover,

$$\text{dim}_{\mathbb{R}} V = 3.$$

* Linear maps.

Let V and W be vector spaces over F. There are many maps from V to W. Think of the case $V = W = \mathbb{R}$. There are a lot of maps from \mathbb{R} to \mathbb{R}. We will be considering a useful type of maps called linear maps.

A map $f : V \to W$ is said to be linear (over F) if it satisfies two following properties:

1. **Additive:**

 $$f(u + w) = f(u) + f(w) \quad \forall u, w \in V$$

 (“First add, then apply f” is equal to “first apply f, then add.”)
2) Scalar multiplicative:

\[f(cv) = cf(v) \quad \forall c \in \mathbb{C}, v \in V. \]

("First scale, then apply \(f \) is the same as "first apply \(f \), then scale.")

* Most maps are not linear, for example \(f(x) = x^2 \) (violate additive rule), \(f(x) = \sin x \) (violate both additive and scaling rule),...

The set of all linear maps from \(V \) to \(W \) is denoted as \(\mathcal{L}(V, W) \).

* A useful fact about linear maps is that they always map to zero vector to the zero vector. To see why, one can apply the additive rule for \(v = w = 0 \):

\[f(0 + 0) = f(0) + f(0) \]

This implies \(f(0) = f(0) + f(0) \). By the Cancellation Law (Homework 1), we obtain \(f(0) = 0 \).

Ex: Let \(V \) be the set of all smooth functions from \((0,1)\) to \(\mathbb{R} \).

By smooth, we mean infinitely differentiable. One can check without difficulty that \(V \) is a vector space over \(\mathbb{R} \).

The differential operator \(D : V \rightarrow V, D(u) = u' \) is a linear map. This is because

\[(u+v)' = u' + v' \]
\[(cu)' = cu' \]

Ex: Let \(V \) be the space of all continuous functions from \([0,1]\) to \(\mathbb{R} \).

The integral operator \(I : V \rightarrow \mathbb{R}, I(u) = \int_0^1 u(x) \, dx \)

is a linear map. This is because

\[\int_0^1 (u(x)+v(x)) \, dx = \int_0^1 u(x) \, dx + \int_0^1 v(x) \, dx, \]
\[\int_0^1 cu(x) \, dx = c \int_0^1 u(x) \, dx \]
Ex: The determinant map $\det : M_{2 \times 2}(\mathbb{C}) \to \mathbb{C}$,

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

is not linear because it violates the addition rule:

$$\det \left(2 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \right) = -8 \quad \text{different}$$

$$2 \cdot \det \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right) = 2 \cdot (4 - 6) = -4$$

Ex: Problem 2 on the worksheet.

$f : \mathbb{C} \to \mathbb{C}$, $f(x) = \overline{x}$

Recall: if $z = a + bi$ then $\overline{z} = a - bi$.

(a) Show that f is a linear map over \mathbb{R}.

We need to check two properties:

• Check if f is additive:
 That is to check $f(x + y) = f(x) + f(y)$ \forall x, y \in \mathbb{C}$
 Let $x_1, x_2 \in \mathbb{C}$. We want to show
 \[f(x_1 + x_2) = f(x_1) + f(x_2) \]
 That is to show
 \[\overline{x_1 + x_2} = \overline{x_1} + \overline{x_2}. \]
 This is a well-known property of complex numbers.

• Check if f is scalar multiplicative (over \mathbb{R}):
 That is to check $f(cx) = cf(x)$ \forall c \in \mathbb{R}, x \in \mathbb{C}$.
 Let $c \in \mathbb{R}$, $x \in \mathbb{C}$. We want to show
 \[f(cx) = cf(x) \]
 That is to show
 \[\overline{c \cdot x} = c \cdot \overline{x}. \]
 This is a well-known property of complex numbers.
(b) f is not a linear map over \mathbb{C} because it violates the scalar multiplication rule. For example,

$$f(i \cdot 1) = f(i) = -i \neq i = i \cdot 1$$