A curve on the 2-dimensional plane can be regarded as a continuous map $f: \mathbb{R} \to \mathbb{R}^2$. There is a curve that fills the entire plane, known as a space-filling curve. This is an interesting object in a field of topology. A space-filling curve is an onto continuous map from \mathbb{R} to \mathbb{R}^2. It is hard to visualize such a curve because it is pathological in many ways. For example, the curve is not a simple curve. In fact, it intersects itself infinitely many times.

However, one cannot find any map $f: \mathbb{R} \to \mathbb{R}^2$ that is both linear and onto (epimorphic). This will be explained by the rank-nullity theorem.

Let $f: V \to W$ be a linear map. The rank-nullity theorem says that

$$\text{rank}(f) + \text{nullity}(f) = \dim V.$$

Consequently, the following statements are equivalent:

- f is monomorphic
- $\text{nullity}(f) = 0$
- $\text{rank}(f) = \dim V$

The following statements are also equivalent:

- f is epimorphic
- $\text{rank}(f) = \dim W$
- $\text{nullity}(f) = \dim V - \dim W$
Let us consider 3 situations:

1. \(\dim V < \dim W \):

 In this case, \(f \) maps a small vector space into a large vector space. Intuitively, one can expect that \(f \) is not epimorphic. This can be proved as follows:

 \[
 \dim \text{range}(f) = \text{rank}(f) = \dim V - \text{nullity}(f) \\
 \leq \dim V \\
 < \dim W.
 \]

 Thus, \(\text{range}(f) \) is strictly smaller than \(W \). Therefore, \(f \) is not epimorphic.

 In particular, there is no linear map \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) that is onto.

 “One cannot cover a big bed with a small blanket.”

2. \(\dim V > \dim W \):

 In this case, \(f \) maps a big space into a smaller vector space. One can expect that \(f \) is not one-to-one. This observation can be proved as follows:

 \(\text{rank}(f) \leq \dim W < \dim V \).

 Thus,

 \[\text{nullity}(f) = \dim V - \text{rank}(f) \geq 1. \]

 “One cannot fit a big blanket into a suitcase without folding it first.”

\[V \to \quad \text{same value} \quad \to \quad \text{same value} \]
dim V = dim W:

Intuitively, dim V = dim W. By rank-nullity theorem, we observe that

\[\text{nullity}(f) = 0 \iff \text{rank}(f) = n \iff f \text{ is isomorphic.} \]

Thus, in this case, “monomorphic”, “epimorphic”, and “isomorphic” are the same.

We summarize our above observations as follows:

Theorem:

Let \(f: V \to W \) be a linear map.

1. If \(\dim V < \dim W \) then \(f \) is not monomorphic.
2. If \(\dim V > \dim W \) then \(f \) is not epimorphic.
3. If \(\dim V = \dim W \) then \(f \) is monomorphic if and only if it is epimorphic.

Sum of two vector spaces

Consider two vector spaces \(U \) and \(V \) (over the same field \(F \)). It is easy to check that \(U \cap V \) is also a vector space.

Consider the intersection of \(U \) and \(V \)

How to check? Observe that \(U \cap V \) is a subset of \(U \), which is a vector space. One only needs to check 3 properties:

\[
\begin{align*}
\text{exercise} \begin{cases}
(1) & 0 \in U \cap V, \\
(2) & U \cap V \text{ is closed under addition,} \\
(3) & U \cap V \text{ is closed under scaling.}
\end{cases}
\end{align*}
\]
Ex: In \mathbb{R}^2, consider two lines passing through the origin. Each line can be viewed as a 1-dimensional vector space. We see from the picture that $U \cap V = \{0\}$, which is a vector space.

Ex: In \mathbb{R}^3, consider two planes that pass through the origin. The intersection of these planes is a line passing through the origin. Thus, $U \cap V$ is also a vector space.

While the intersection $U \cap V$ is always a vector space, the union $U \cup V$ is generally not a vector space. A simple example is that:

- U and V are two lines on the plane.
- The union of two lines is not a vector space because it is not closed under addition.

While the intersection $U \cap V$ is always a vector space, the union $U \cup V$ is generally not a vector space. A simple example is that:

- U and V are two lines on the plane.
- The union of two lines is not a vector space because it is not closed under addition.

A natural question is: what is a vector space that contains both U and V?

The union $U \cup V$ is not an answer because it is not a vector space. There are in fact infinitely many vector spaces that contain both U
and V. For example, when U and V are lines, the plane that contains both lines is such a vector space. The 3-dimensional space as in the picture is also a vector space that contains both U and V.

We therefore adjust the question to make it more meaningful:

What is the smallest vector space that contains both U and V?

This vector space will be denoted as $U + V$ (the sum of vector space U and vector space V). It is defined as

$$U + V = \{ u + v : u \in U, v \in V \}.$$

Ex:

$U + V =$ plane that contains both lines U and V.

Ex:

$U = \text{xy-plane}$
$V = \text{line passing through the origin}$
$U + V = \mathbb{R}^3.$

How to find a basis of $U + V$?

Let B_U be a basis of U, and B_V be a basis of V. We know that
\[U = \text{span} \mathbf{B}_1 \quad \text{and} \quad V = \text{span} \mathbf{B}_2 \]

Write

\[\mathbf{B}_1 = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \}, \]
\[\mathbf{B}_2 = \{ \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m \}. \]

The concatenation of \(\mathbf{B}_1 \) and \(\mathbf{B}_2 \) is defined as

\[\mathbf{B}_1 \sqcup \mathbf{B}_2 = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m \}. \]

There is a slight difference between concatenation and union. If there are common vectors between \(\mathbf{B}_1 \) and \(\mathbf{B}_2 \), then the union \(\mathbf{B}_1 \cup \mathbf{B}_2 \) includes each of these vectors only once, while the concatenation includes these vectors twice. For example,

\[\mathbf{B}_1 = \{ 1, 2, 3 \} \]
\[\mathbf{B}_2 = \{ 3, 4, 5 \} \]
\[\mathbf{B}_1 \cup \mathbf{B}_2 = \{ 1, 2, 3, 4, 5 \} \]
\[\mathbf{B}_1 \sqcup \mathbf{B}_2 = \{ 1, 2, 3, 3, 4, 5 \}. \]

We see that the span of \(\mathbf{B}_1 \sqcup \mathbf{B}_2 \) includes both \(U \) and \(V \). Moreover, any vector space that contains both \(U \) and \(V \) must also contain \(\mathbf{B}_1 \sqcup \mathbf{B}_2 \). Thus, \(\text{span}(\mathbf{B}_1 \sqcup \mathbf{B}_2) \) is the smallest vector space that contains both \(U \) and \(V \). We get

\[U + V = \text{span} (\mathbf{B}_1 \sqcup \mathbf{B}_2) \]

To find a basis of \(U + V \), we only need to extract linearly independent vectors from \(\mathbf{B}_1 \sqcup \mathbf{B}_2 \).

We do so by arranging vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m \) as columns of a matrix.

\[
\begin{bmatrix}
\mathbf{v}_1 & \mathbf{v}_2 & \ldots & \mathbf{v}_n & \mathbf{w}_1 & \mathbf{w}_2 & \ldots & \mathbf{w}_m \\
\end{bmatrix}
\]

\[\text{REF} \]

pivot columns tell us which vectors among \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{w}_m \) to keep.

We will consider some examples next time.