Math 342  Linear Algebra II  Winter 2020
Class Information
Instructor: Tuan Pham
TA: Matthias Merzenich
Section 20
Class meetings: Bexell Hall 412, MWF 11:00  11:50 AM
[Syllabus]
[Tentative calendar]
[Canvas site]
Office Hours
M, W, F 1:00  2:00 PM at Kidder Hall 268
Th 12:00  2:00 PM at Kidder Hall 268
W 2:00  3:00 PM at Kidder Hall 108 J (computer lab)
Assignments
Lecture notes
Review (Mar 13): review for Final exam, link to Zoom video
Lecture 27 (Mar 11): more examples on adjoint operator; singular value decomposition
Lecture 26 (Mar 9): adjoint operator
Lecture 25 (Mar 6): another minimizing problem (leastsquare method)
Lecture 24 (Mar 4): example of GramSchmidt orthogonalization procedure; minimizing problem (cont.)
Lecture 23 (Mar 2): example of GramSchmidt orthogonalization procedure; minimizing problem
Lecture 22 (Feb 28): finding orthogonal projection; GramSchmidt orthogonalization procedure
Lecture 21 (Feb 26): orthogonal basis and orthogonal projection
Lecture 20 (Feb 24): examples of inner products and norms
Lecture 19 (Feb 21): normed spaces
Lecture 18 (Feb 19): inner product space; norm induced by the inner product
Lecture 17 (Feb 17): basis that diagonalizes a linear map; inner product
Lecture 16 (Feb 14): checking if a linear map is diagonalizable
Lecture 15 (Feb 12): a direct method to find eigenvalues and eigenvectors
Lecture 14 (Feb 7): continue an example of finding eigenvalues and eigenvectors
Lecture 13 (Feb 5): eigenvalues, eigenspaces and eigenvectors; coordinatebased method
Lecture 12 (Feb 3): invariant subspaces
Lecture 11 (Jan 31): direct sum of two or more vector spaces
Lecture 10 (Jan 29): finding basis of the sum of two vector spaces
Lecture 9 (Jan 27): an application of ranknullity theorem; sum of two vector spaces
Lecture 8 (Jan 24): relations among null space, range space, column space, row space; ranknullity theorem
Lecture 7 (Jan 22): range space, null space, rank, nullity
Lecture 6 (Jan 17): matrix represenatation of linear maps, null space
Lecture 5 (Jan 15): linear maps
Lecture 4 (Jan 13): basis and dimension
Lecture 3 (Jan 10): subspace, linear combination, spanning set
Lecture 2 (Jan 8): definition of vector spaces and examples
Lecture 1 (Jan 6): introduction
Remarks before / after class
Final review
Linear Algebra Done Right  videos
Midterm exam solution
Midterm review
Instructions to install Matlab
Links
Department of Mathematics
Oregon State University
 This page was last modified on Saturday, March 14, 2020.

