1. In this problem, we will use Taylor approximation to approximate the integral

\[I = \int_1^2 \frac{e^x - 1}{x} \, dx. \]

Let us denote \(f(x) = \frac{e^x - 1}{x} \).

(a) Derive a formula for the \(n \)’th Taylor polynomial about \(x_0 = 0 \), called \(p_n(x) \), of \(f \). Use the summation symbol \(\Sigma \) to write \(p_n(x) \).

Hint: use the Taylor approximation of the function \(e^x \).

(b) Write the integral \(I_n = \int_1^2 p_n(x) \, dx \) using \(\Sigma \) symbol and without integral signs.

(c) How large should \(n \) be so that \(I_n \) approximates \(I \) with an error less than \(\epsilon = 10^{-5} \)?

(d) With a value of \(n \) found in Part (c), write a Matlab code to compute \(I_n \). Matlab has a built-in function called ‘int’ to compute approximately \(I \). Try the following:

```matlab
format long
f = @(x) (exp(x)-1)./x
integral(f,1,2)
```

Double check if \(I_n \) indeed approximates \(I \) with error less than \(10^{-5} \).

2. Let us consider the following toy model of the IEEE double precision floating-point format. This toy model makes it simpler to demonstrate how addition and multiplication of floating-point numbers work.

The sequence of 8 bits

\[
\begin{array}{cccccccc}
\text{c}_0 & \text{b}_1 & \text{b}_2 & \text{b}_3 & \text{a}_1 & \text{a}_2 & \text{a}_3 \\
\text{sign part} & \text{exponent part} & \text{mantissa part}
\end{array}
\]

represents a number \(x = \sigma \cdot \bar{x} \cdot 2^e \) where \(\sigma, \bar{x}, e \) are determined as follows:

\[
\sigma = \begin{cases}
1 & \text{if } \text{c}_0 = 0, \\
-1 & \text{if } \text{c}_0 = 1,
\end{cases}
\]

\[
E = (b_1b_2b_3b_4)_2
\]

- If \(1 \leq E \leq 14 \) then

\[
e = E - 7,
\]

\[
\bar{x} = (1.a_1a_2a_3)_2
\]

- If \(E = 0 \) then \(e = -6 \) and \(\bar{x} = (0.a_1a_2a_3)_2 \).
- If \(E = 15 \) then \(x = \pm \infty \) (depending on the sign \(\sigma \)).

(a) Find the dynamic range and machine epsilon of this floating-point number format.

(b) What numbers are represented by the bit sequences 11001001, 00000000, 11111000 ?
3. There are only 256 different sequences of 8 bits. Thus, the sequence of 8 bits in Problem 2 cannot represent precisely every real number. It can represent precisely only 254 real numbers and ±∞. However, any real number can be represented approximately by a bit sequence. The principle is simple: given a real number \(x \), we look for the number \(y \) among those 256 numbers that is closest to \(x \). Then \(x \) is represented by the bit sequence that represents \(y \).

The method is as follows:

- Write \(x \) is binary form. For example, \(6.3 = (110.010011001 \ldots)_2 \).
- Shift the binary point to the form \(1.c_1c_2c_3 \ldots \) by choosing an exponent \(-6 \leq e \leq 7\). For example, \(6.3 = (1.10010011001 \ldots)_2 \times 2^2 \).
- Round the mantissa to 3 digits after the dot. For example, \(6.3 \approx (1.101)_2 \times 2^2 \).
- Find the value of \(\sigma, \bar{x}, e \). For example, these values in the case \(x = 6.3 \) are \(\sigma = 1 \), \(\bar{x} = (1.101)_2 \) and \(e = 2 \). The bit sequence that represents 6.3 is therefore 01001101.

Note that in the second step, it may be impossible to choose \(e \) between \(-6 \) and 7. An example is when \(e > 7 \). In this case, the number is “too big” and is approximated by ±∞ (depending on the sign \(\sigma \)). Another example is when \(e < -6 \). In this case, one will shift the binary point one digit to the left to get the form \((0.1c_1c_2c_3 \ldots)_2 \). The new exponent is now \(e + 1 \). If the new exponent is equal to \(-6 \) then one proceeds to Step 3 and 4. If the new exponent is still less than \(-6 \), the number \(x \) is “too close to zero” and thus is approximated by 0.

(a) Represent the decimal numbers 1, 5.5, 12.9, 1000, 0.0001 in the floating-point format \(x = \sigma \cdot \bar{x} \cdot 2^e \) and bit sequence described in Problem 2.

(b) Find the smallest number larger than 5.5 that can be represented precisely by the floating-point format in Problem 2. The same question for 12.9 and 100.25.