Problem 1.
Let \(f(x) = (1 + x)^{-1} \). For evenly spaced sample points \(0 = x_1 < x_2 < \cdots < x_n = 2 \), let \(P_n \) be the polynomial that interpolates \((x_n)\). Find \(n \) such that
\[
|f(x) - P_n(x)| \leq 10^{-4} \quad \forall x \in [0, 2]
\]
Solution
We can bound the error by using the fact that the interpolating points \((x_n)\) are uniformly spaced.
\[
|f(x) - P_n(x)| \leq \frac{1}{n} \left(\frac{2}{n-1} \right)^n \max_{x \in [a,b]} |f^{(n)}(x)|
\]
As \(|f^{(n)}(x)| = n!(1 + x)^{-n-1} \), the maximum occurs at \(x = 0 \) (as \(f \) is continuous on a closed and bounded interval, \(f \) attains its maximum), then
\[
|f(x) - P_n(x)| \leq \frac{1}{n} \left(\frac{2^n}{n-1} \right)^n \frac{n!}{(1 + 0)^{n+1}} = \left(\frac{2}{n-1} \right)^n (n-1)! < 10^{-4}
\]
With a calculator, we can solve for \(n \) and find that \(n \geq 31 \) is sufficient to satisfy the error bound.

Problem 2.
2. Given a function \(f \) on some interval, say \([-1, 1]\), and an integer \(n > 1 \), we are interested in the question: what set of sample points \(\{x_1, x_2, \ldots, x_n\} \) on \([-1, 1]\) should we choose so that the corresponding interpolation polynomial \(P_n \) can best approximate function \(f \)? Note that the number of sample points \(n \) is fixed. We are testing different choices of sample points.

To investigate this question, let us consider an example \(f(x) = \frac{1}{1 + 10x^2} \) and let \(n = 11 \), partitioning \([-1, 1]\) into 10 partitions. Consider two ways of sampling:

- Evenly spaced \(-1 = x_1 < x_2 < \ldots < x_n = 1\)
- Unevenly spaced, \(z_k = \cos \left(\frac{2k-1}{2n} \pi \right) \), for \(k = 1, 2, \ldots, n \).

a) Use the Plot command to sketch each set of sample points on the interval \([-1, 1]\).

b) Let \(P_n \) be the polynomial that interpolates the set of data points \((x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_n, f(x_n))\). Plot \(P_n \) and \(f \) on the same graph.

c) Let \(Q_n \) be the polynomial that interpolates the set of data points \((z_1, f(z_1)), (z_2, f(z_2)), \ldots, (z_n, f(z_n))\). Plot \(Q_n \) and \(f \) on the same graph.

d) Based on the graphs, is one way of sampling significantly better than the other? Give a rough explanation for your observation?

e) Repeat parts a – d for the objective function \(f(x) = \cos(x) \).
Solution

a) Some Matlab code:

```matlab
n = 11;
xpts = linspace(-1,1,n);
zpts = 1:1:n;
zpts = cos((2.*zpts-1)/(2*n)*pi);

yxpts = objective(xpts);
yzpts = objective(zpts);

scatter(xpts, yxpts, 'filled', 'r')
grid on
hold on
scatter(zpts, yzpts, 'filled', 'g')
legend('Uniform','Cosine')
hold off

function out = objective(in)
    out = 1./(1+10.*(in).^2);
end
```

b) Some Matlab code:
% Read in our data
n = 11;
xpts = linspace(-1,1,n);
tpts = linspace(-1,1,500);
yxpts = objective(xpts);
ytpts = objective(tpts);

syms interP
interP = make_interpolating_polynomial(xpts, yxpts);
fplot(interP, [-1,1])
ggrid on
hold on
plot(tpts, ytpts)
scatter(xpts, yxpts, 'filled', 'r')
ttitle('Interpolating polynomial')
hold off

% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
% website
function poly = make_interpolating_polynomial(xpts, ypts)
 data_length = length(xpts);
 coef_array = divdif(xpts, ypts);
 coef = coef_array(1,:);

 % Find the basis polynomials
 basis = ones(1, data_length, 'sym'); % To store our basis polynomials
 syms t % Our symbolic variable
 for basis_index = 2: length(basis) % Loop over each basis
 for x_index = 1: basis_index-1 % Loop over the first basis_index
 data points we want
 basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
 end
 end

 % Construct the interpolating polynomial
 P = basis*coef';
 poly = simplify(P);
end

% We built a recursive helper function that will make short work of the
% Newton's
% Divided Differences coefficients.
function coef_array = divdif(Xpts,Ypts)
 % Xpts and Ypts are data vectors of the same length
 % Xpts = [x1, x2, x3, ... xN]
 % Ypts = [y1, y2, y3, ... yN]
 data_length = length(Xpts);
 coef_array = zeros(data_length);
 coef_array(:,1) = Ypts'; % Write the data values to the first column
 for col = 2: data_length
 for row = 1 : (data_length - col + 1)
c) Some Matlab code:

```matlab
% and now our magic step
coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(row, col-1)) / (Xpts(row + col - 1) - Xpts(row));
end
end

function out = objective(in)
    out = 1./(1+10.*(in).^2);
end
```

Winter 2020
interQ = make_interpolating_polynomial(zpts, yzpts);
fplot(interQ, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(zpts, yzpts, 'filled', 'g')
title('Interpolating polynomial')
hold off

% This function is recovered from HW6#5. Lagrange's method is also
% acceptable for this problem, using the starter code on the course
% website
function poly = make_interpolating_polynomial(xpts, ypts)
 data_length = length(xpts);
 % Find div-dif coefficients
 coef_array = divdif(xpts, ypts);
 coef = coef_array(1,:);

 % Find the basis polynomials
 basis = ones(1, data_length, 'sym') ; % To store our basis polynomials
 syms t % Our symbolic variable
 for basis_index = 2: length(basis) % Loop over each basis
 for x_index = 1: basis_index-1 % Loop over the first basis_index
 data points we want
 basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
 end
 end

 % Construct the interpolating polynomial
 P = basis * coef ;
 poly = simplify(P);
end

%We built a recursive helper function that will make short work of the
%Newton's
%Divided Differences coefficients.
function coef_array = divdif(Xpts, Ypts)
 % Xpts and Ypts are data vectors of the same length
 % Xpts = [x1, x2, x3, ... xN]
 % Ypts = [y1, y2, y3, ... yN]
 datalength = length(Xpts);
 coef_array = zeros(datalength);
 coef_array(:,1) = Ypts'; % Write the data values to the first column
 for col = 2: datalength
 for row = 1: (datalength - col + 1)
 %and now our magic step
 coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(row, col - 1))/(Xpts(row + col -1) - Xpts(row));
 end
 end
end
function out = objective(in)
 out = 1./(1+10.*(in).^2);
end

d) The points z_k produces a significantly better interpolation polynomial than the evenly spaced x_k. P_n gives a slightly better approximation f than Q_n near the center of the interval, but the error near the ends of the interval of P_n is worse than Q_n. Decreasing the distance between points on the endpoints helps resist the Runge effect as the maximum error.

e) We change the objective function to $f(x) = \cos(x)$. The code is repeated for completeness.

Repeat of part a) Some Matlab code:

```matlab
n = 11;
xpts = linspace(-1,1,n);
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);

yxpts = objective(xpts);
yzpts = objective(zpts);
scatter(xpts, yxpts, 'filled', 'r')
```
Repeat of part b) Some Matlab code:

```matlab
% Read in our data
n = 11;
xpts = linspace(-1,1,n); 
tpts = linspace(-1,1,500); 
yxpts = objective(xpts); 
ytpts = objective(tpts); 

syms interP
interP = make_interpolating_polynomial(xpts, yxpts); 
fplot(interP, [-1,1])
grid on
hold on
```

```matlab
grid on
hold on
scatter(zpts, yzpts, 'filled', 'g')
legend('Uniform','Cosine')
hold off

function out = objective(in)
    out = cos(in);
end
```

Winter 2020
plot(tpts, ytpts)
scatter(xpts, yxpts, 'filled', 'r')
title('Interpolating polynomial')
hold off

% This function is recovered from HW6#5. Lagrange's method is also % acceptable for this problem, using the starter code on the course website
function poly = make_interpolating_polynomial(xpts, ypts)
data_length = length(xpts);
% Find div-dif coefficients
divdif = divdif(xpts, ypts);
der = divdif(1,:);

% Find the basis polynomials
basis = ones(1, data_length, 'sym'); % To store our basis polynomials
for basis_index = 2: length(basis) % Loop over each basis
 for x_index = 1: basis_index -1 % Loop over the first basis_index
data points we want
 data = basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
 end
end

% Construct the interpolating polynomial
poly = simplify(P); end

% We built a recursive helper function that will make short work of the Newton's % Divided Differences coefficients.
function coef_array = divdif(Xpts, Ypts)
data_length = length(Xpts);
coef_array = zeros(data_length);
for col = 2: data_length % Xpts and Ypts are data vectors of the same length
 for row = 1 : (data_length - col + 1)
 % and now our magic step
 coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(row, col - 1))/(Xpts(row + col -1) - Xpts(row));
 end
end

function out = objective(in)
out = cos(in); end
Repeat of part c) Some Matlab code:

```matlab
n = 11;
zpts = 1:1:n;
zpts = cos((2.*zpts-1)./(2*n)*pi);
tpts = linspace(-1,1,500);
ytpts = objective(tpts);
yzpts = objective(zpts);

syms interQ
interQ = make_interpolating_polynomial(zpts, yzpts);
fplot(interQ, [-1,1])
grid on
hold on
plot(tpts, ytpts)
scatter(zpts, yzpts, 'filled', 'g')
title('Interpolating polynomial')
hold off
```

% This function is recovered from HW6#5. Lagrange's method is also acceptable for this problem, using the starter code on the course
function poly = make_interpolating_polynomial(xpts, ypts)
 data_length = length(xpts);
 % Find div-dif coefficients
 coef_array = divdif(xpts, ypts);
 coef = coef_array(1,:);

 % Find the basis polynomials
 basis = ones(1, data_length, 'sym'); % To store our basis polynomials
 syms t % Our symbolic variable
 for basis_index = 2: length(basis) % Loop over each basis
 for x_index = 1: basis_index-1 % Loop over the first basis_index
 data points we want
 basis(basis_index) = basis(basis_index) * (t - xpts(x_index));
 end
 end

 % Construct the interpolating polynomial
 P = basis*coef';
 poly = simplify(P);
end

% We built a recursive helper function that will make short work of the
% Newton's
% Divided Differences coefficients.
function coef_array = divdif(Xpts, Ypts)
 % Xpts and Ypts are data vectors of the same length
 % Xpts = [x1, x2, x3, ... xN]
 % Ypts = [y1, y2, y3, ... yN]
 datalength = length(Xpts);
 coef_array = zeros(datalength);
 coef_array(:,1) = Ypts'; % Write the data values to the first column
 for col = 2:datalength
 for row = 1 : (datalength - col + 1)
 % and now our magic step
 coef_array(row, col) = (coef_array(row+1, col-1) - coef_array(row, col - 1))/(Xpts(row + col -1) - Xpts(row));
 end
 end
end

function out = objective(in)
 out = cos(in);
end
Repeat of part d) Neither polynomial is particularly better or worse than the other.

Problem 3.

We now test how well quadratic spline interpolation can approximate a function. Consider \(f(x) = \frac{1}{1+10x^2} \) on the interval \([-1, 1]\). Choose \(n = 11 \) evenly spaced sample points \(-1 = x_1 < x_2 < \ldots < x_n = 1\). Set \(y_j = f(x_j) \). On each subinterval, \([x_j, x_{j+1}]\), the function \(f \) is approximated by a quadratic polynomial \(s_j(x) \) such that the slope of the approximation curve varies smoothly across each sample point. Denote \(M_j = s'_j(x_j) \) and \(M_{j+1} = s'_{j+1}(x_{j+1}) \).

a) For \(j = 1, \ldots, n-1 \), use the fact that \(s_j(x_j) = y_j \) to write the formula for \(s_j(x) \) in terms of \(y_j, M_j, \) and \(M_{j+1} \).

b) For \(j = 1, \ldots, n-1 \), write an expression that \(M_j \) and \(M_{j+1} \) has to satisfy such that \(s_j(x_{j+1}) = y_{j+1} \).

c) In part (b), we know that each \(j = 1, \ldots, n-1 \), yields an equation which \(M_1, M_2, \ldots, M_n \). Thus there are \(n-1 \) equations to solve for \(n \) unknowns \(M_1, M_2, \ldots, M_n \).

d) Use Matlab to draw the spline interpolation curve (defined as the concatenation of the quadratic curves \(s_1, s_2, \ldots, s_n \)). Plot \(f \) and the interpolation \(P_n \) from problem 2 on the same plot. Which is the better approximation of \(f \) (spline or polynomial)?
Solution

a) From the notes, we can set

\[s_j(x) = \frac{M_j - M_{j+1}}{2(x_j - x_{j+1})}(x^2 - x_j^2) + \frac{x_j M_{j+1} - x_{j+1} M_j}{x_j - x_{j+1}}(x - x_j) + y_j \]

where \(x_j = \frac{3i}{n} - 1 \), simplified for brevity.

b) Computing the values \(M_j \) is done iteratively, so we may assume that if \(j > 0 \), we can assume \(M_j \) is known (as \(M_0 \) is fixed or assumed to be a known value). Then

\[M_{j+1} = \frac{2(y_{j+1} - y_j)}{x_{j+1} - x_j} - M_j \]

c) Set \(M_0 = 0 \) as indicated. We can use the recursive algorithm described above, pre-computing \(x_j \) and \(f(x_j) \).

```
n = 11;  % n sample points
x = linspace(-1,1,n);
f = @(x) (1 + 10.*x.^2).^( -1);
y = f(x);
M = zeros(1,n);
% We don't need to define M(0) as 0 again
for ii=2:n % Generate the coefficients M_j
  M(ii) = 2 .* (y(ii) - y(ii-1)) ./ (x(ii) - x(ii-1)) - M(ii-1);
end
disp(M)
```

This produces the sequence of values of \(M_j \) as

\[0 \quad 0.44226 \quad 0.3803 \quad 1.2919 \quad 2.0048 \quad 0.85238 \quad -3.7095 \quad 0.41282 \quad -2.0851 \quad 1.2625 \quad -1.7048 \]

d) We start with the prior algorithm for computing values of \(M \), then build the splines

```
% A script to compute and plot quadratic spline approximations for a function.

% Precompute a few terms
n = 11;  % n sample points
x = linspace(-1,1,n);
f = @(x) (1 + 10.*x.^2).^( -1);
y = f(x);
M = zeros(1,n);
% We don't need to define M(0) as 0 again
for ii=2:n % Generate the coefficients M_j
  M(ii) = (2 .* (y(ii) - y(ii-1))) ./ (x(ii) - x(ii-1)) - M(ii-1);
end
for ii = 1:n-1 % build each spline locally
  % setup local variables
  x_local = x(ii):0.01:x(ii+1);
```
% Build the polynomial
a_local = (M(ii) - M(ii+1)) ./ (2.*(x(ii) - x(ii+1)));
b_local = ((x(ii) .* M(ii+1)) - (x(ii+1) .* M(ii)))./(x(ii) - x(ii+1));
y_local = a_local .* (x_local .^2 - x(ii)^2) + b_local .* (x_local - x(ii)) + y(ii);

% Now for the plot
plot(x_local, y_local)
hold on
scatter(x, y, 'g') % Add the interpolating points as a sanity check
hold off
saveas(gcf, 'MTH351_HW7_fig1', 'epsc') % Save the figure to an eps file

This produces the image

To overlay the plots, specify **hold off** and then run your script or call your function that generates the interpolating polynomial. When we overlay the polynomial interpolation, we obtain
The blue line is \(f \), the green line is the interpolating polynomial, and the patchwork of differently colored lines is the quadratic spline. It appears that the spline is overall a better approximation, as the maximum error of the spline is less than the maximum error of the interpolating polynomial. However, if we are primarily interested in the behavior near 0, the interpolating polynomial is a better approximation, as it better preserves the curvature of the function \(f \). You can see this specifically by examining the slopes of \(f \), \(P \), and \(s \) at 0 (the slope of \(f \) and \(P \) is 0, while \(s' \) is not 0 as 0 does not maximize \(s \)).