A bit sequence is what a computer stores.

\[c_0 \cdot b_1 b_2 \ldots b_n : a_1 a_2 \ldots a_p \] (IEEE 754-1985 standard, or double precision floating-point format)

A floating-point format is an interpretation of the bit sequence. It is of the form \(x = 6 \cdot 5 \cdot 2^e \)

In the IEEE floating-point format, the numbers that can be precisely represented by the bit sequences are dense near 0 and sparcer as we go further from 0.

The smallest positive number that can be represented (precisely) by a bit sequence is

\[
\underbrace{0.00 \ldots 01}_5 \times 2^{-1022} = 2^{-1024}
\]

How small is this number? Let us find a such that \(2^{-1024} \approx 10^{-a} \).

Take natural log of both sides:

\[-1024 \ln 2 = -a \ln 10\]

We get

\[a = \frac{1024 \ln 2}{\ln 10} \approx 323. \]

The smallest number larger than 1 that can be represented with exactness by a bit sequence is

\[
\underbrace{1.00 \ldots 01}_5 \times 2^0 = 1 + 2^{-52}
\]

The gap between this number and 1 is \(\varepsilon = 2^{-52} \approx 10^{-16} \). This is
Called the machine epsilon of the floating-point format.

The largest number that can be represented by a bit sequence is
\[
\frac{1.11...1}{\underbrace{1.11...1}}_2 \times 2^{1023} \approx 2 \times 2^{1023} = 2^{1024} \approx 10^{308}.
\]

One can do the following experiments on Matlab:

\[
\begin{align*}
\Rightarrow & \ 10^{^(-323)} \\
\Rightarrow & \ 10^{^(-324)} \\
\Rightarrow & \ 10^{^308} \\
\Rightarrow & \ 10^{^309}
\end{align*}
\]

The commands

\[
\begin{align*}
\Rightarrow & \ 0 + 10^{-16} - 0 \\
\Rightarrow & \ 1 + 10^{-16} - 1
\end{align*}
\]

gives different results: the first one gives a number close to \(10^{-16}\) but the second one gives 0.

Matlab performs the command \(0 + 10^{-16} - 0\) from left to right. It will first add \(10^{-16}\) to 0. Note that computers do computation only on binary numbers. They have to convert \(10^{-16}\) into binary system (the double precision floating point format), perform the operation and convert the result to decimal format to give as output. Thus, \(10^{-16}\) is first approximated by the nearest double precision floating-point number (the red dot). Then it is added to zero.

On the other hand \(1 + 10^{-16}\) will be approximated as 1 before the subtraction. Therefore, the result is equal to 0.
Issues caused by arithmetic of floating-point numbers:
We consider some consequences of working with floating-point format.

1) Loss of significant digits:
 It is easy to see that the operations (addition, multiplication, subtraction, division) on floating-point numbers are not exact. A step of rounding is always required. Rounding can cause the loss of important digits. This leads to arithmetic mistakes such that

 \[x + y = x \]

 when \(y \) is too small relative to \(x \). In this case, \(y \) is “absorbed” into \(x \).

 Ex:

 \[1 + 10^{-16} = 1 \]

 Ex:

 We know that

 \[\lim_{h \to 0} \frac{(1+h)^2 - 1}{h} = \lim_{h \to 0} (2 + h) = 2. \]

 We can hope that when we enter a very small value of \(h \) on the computer, it will produce a number very close to 2. Let’s do an experiment.

 \[\frac{(1+h)^2 - 1}{h} \]

 For \(h = 10^{-6}, 10^{-7}, 10^{-10} \), the results are quite good. For \(h = 10^{-16} \), we get 0. This is because \(1 + h \) is rounded to 1 before being squared.

 Ex:

 We know that

 \[\lim_{n \to \infty} n (1 + \frac{1}{n} - 1) = 1. \]

 But if \(n \) is sufficiently large (\(\sim 10^{16} \)), Matlab gives answer 0.

2) Overflow and underflow:
 This issue is caused by dealing with too big or too small numbers.

 Ex:

 Consider a diagonal matrix \(A \) of size \(400 \times 400 \) where every entry on the diagonal is equal to 0.1.
The dimension of A is not too big. In application, it is common to deal with even bigger matrices. For example, in the method called Finite Element method, one deals with a matrix called "stiffness matrix." This is usually a very big matrix. The size of each entry of A is not too small. A is obviously not a singular matrix because $A = (0.1)I_{400}$. However, Matlab considers it singular because

$$\det(A) = (0.1)^{400} = 10^{-900} \approx 0.$$

This phenomenon is called underflow.

Ex: the distance from a point (x,y) on the plane and the origin is

$$d = \sqrt{x^2 + y^2}$$

Mathematically,

$$\sqrt{x^2 + y^2} = x \sqrt{1 + \left(\frac{y}{x}\right)^2}$$

However, these expressions are different from a computational perspective.

When x and y are big, say $xy \approx 10^{300}$, the LHS is equal to ∞. But the right hand side is $10^{200} \sqrt{2} \approx \ldots$ (still within the range that double precision floating-point format can represent).

3) Noise caused by the randomness of rounding

Consider two expressions

$$f_1(x) = (x - 1)^3$$

$$f_2(x) = x^3 - 3x^2 + 3x - 1$$
They are mathematically equivalent. However, they are different computationally. It takes 2 multiplications to compute \(f_1 \), but 5 multiplications to compute \(f_2 \). More arithmetic operations being done lead to more roundings being made. Let’s take a look at a narrow interval around 1, say \([1-10^{-5}, 1+10^{-5}]\).

![Graph](image)

The computation of \(f_2 \) involves more rounding steps. The rounding errors at each step (\(x, x+x, x+x+x, 3x, 3x+3x \)) are relatively independent of each other. Moreover, the total errors when \(x \) varies in the interval are relatively random. Thus, one can observe random fluctuations of the value of \(f_2(x) \) as \(x \) varies in the interval. Test the following code on Matlab:

```matlab
h = 10^(-6);
x = 1-10^(-5) : h : 1+10^(-5);
y1 = (x-1).^3;
y2 = x.^3 - 3*x.^2 + 3*x - 1;
plot(x,y1,'.b',x,y2,'.r')
```