Practice 2

In this note, we will practice inputing variables and plotting in Matlab.

1. Matlab considers every variable as a matrix. For example, the variable \(x \) in the following command

\[
\text{>> } x = 2
\]

is understood as a \(1 \times 1 \) matrix.

2. The command

\[
\text{>> } x = 1 : 0.3 : 5
\]

gives a row vector of real numbers starting with 1, equally spaced by 0.3, and not exceeding 5. In this case, \(x \) is a vector of 14 numbers, or a matrix of size \(1 \times 14 \). To check the length of \(x \), use the command

\[
\text{>> length(x)}
\]

3. Most built-in functions in Matlab take matrix as input. For example, with vector \(x \) as above, try the following:

\[
\text{>> sin(x)} \\
\text{>> sqrt(x)} \\
\text{>> log(x)} \\
\text{>> exp(x)} \\
\text{>> x - 1} \\
\text{>> 2*x}
\]

Matlab will compute sin, sqrt, logarithm, exponentiation, subtraction by 1, multiplication by 2, at each entry of the vector \(x \).

4. However, to raise each entry of vector \(x \) to a power, one has to use the \(^.\) operator. For example,

\[
\text{>> x.^2} \\
\text{>> x.^(-2)} \\
\text{>> 1./x} \\
\text{>> x^2}
\]

The last command gives an error because Matlab understands it as \(x \ast x \). Because \(x \) is a \(1 \times 14 \) matrix, it cannot be multiplied by itself (incompatibility of dimension). It would be correct to multiply \(x \) by the its transpose, which has dimension \(14 \times 1 \).

\[
\text{>> x*transpose(x)}
\]

5. The entries of vector \(x \) are indexed from 1 to 14 (not from 0 to 13). To access the 9th entry of \(x \), for example, write

\[
\text{>> x(9)}
\]
Because x is a matrix of size 1×14, one can also write

\[
>> x(1,9)
\]

6. The basis syntax of the ‘plot’ command is ‘plot(x,y)’ where x and y are vectors of the same length. Mallab will plot the following points $(x(1), y(1)), (x(2), y(2)), \ldots, (x(n), y(n))$, where n is the common length of x and y, and then connect two consecutive points by a straight line segment. Try the following:

\[
>> y = x.^2 \\
>> plot(x,y)
\]

Sometimes, we want to customize the appearance of the plot by, for example, removing the line segments. Try the following commands:

\[
>> plot(x,y,'.') \\
>> plot(x,y,'o') \\
>> plot(x,y,'-o') \\
>> plot(x,y,'.r')
\]

To graph functions $y = x^2$ and $z = 1/x$ on the same plot, one can do as follows:

\[
>> z = 1./x \\
>> plot(x,y,'b',x,z,'r')
\]

To learn more options of the ‘plot’ command, type

\[
>> help plot
\]

7. The ‘while’ loop is used to repeat certain commands until a condition is false. The basic syntax is:

```
while (condition) 
    commands 
end
```

The condition in the ‘while’ loop is a logical statement, having value 1 if true, 0 if false. Try the following:

\[
>> a = 1 \\
>> b = 2 \\
>> c = 3 \\
>> a == b \\
>> a+b == c \\
>> a ~= b \\
>> (a ~= b) && (c ~= b) \\
>> (a ~= b) || (c == b)
\]

Note that ~= denotes ‘not equal to’, && denotes ‘and’, || denotes ‘or’.