1. Newton’s method can be used to compute approximately $\sqrt{3}$ by the procedure:

 - Find a function f such that $x^* = \sqrt{3}$ is a root.
 - Write the iteration formula of Newton’s method.
 - Pick a point x_0 as the initial iteration. The closer x_0 is to x^* the better.
 - What do you get for x_4?

 See Lecture 10
2. Find approximately the intersection point of the graph of \(u(x) = e^x \) and the graph of \(v(x) = \frac{1}{x} \) by

(a) Newton’s method (3 iterations).

(b) Bisection method (3 iterations).

We will find approximate root of

\[f(x) = x e^x - 1. \]

(a) Use Newton’s method:

we have \(f'(x) = x e^x + e^x = (x+1)e^x \)

Pick \(x_0 = 1 \). The iteration formula is

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n e^{x_n} - 1}{(x_n+1)e^{x_n}} \]

From here one can compute \(x_1, x_2, x_3 \).

\(x_3 = \ldots \) is the final answer.
(b) Observe that \(f'(x) = \frac{1}{2} e^{\frac{1}{2}x} - 1 < 0 \) and
\[f(1) = e - 1 > 0 \]

One can pick the initial interval as
\([a_0, b_0] = [\frac{1}{2}, 1] \).

Then find \([a_1, b_1], [a_2, b_2], [a_3, b_3] \).

\[c_3 = \frac{a_3 + b_3}{2} \] is the final answer.