Incorporating Temporal Variation into a Population Model

1. Decide which model to use (discrete, den independent, etc.)
2. Decide which parameters to model as a random variable (b,d vs. R,\(\lambda\))
3. **Decide which distribution to use**
4. Incorporate RV(s) into population model
5. Run pop model for time period of interest
6. Calculate proportion of times population meets some criteria

Incorporating Stochasticity into Density-Independent Models

Temporal, Demographic, and Individual

![Image of lynx in snow]
Stochasticity, Heterogeneity, and Variation

Variation (math)
• Marked difference or deviation from the normal or recognized form, function, or structure.

Stochastic (stat)
• Involving or containing a random variable(s): stochastic calculus.
• Involving chance or probability: a stochastic stimulation.
• Of, relating to, or characterized by conjecture; conjectural.

Heterogeneous
• Consisting of dissimilar elements or parts; not homogeneous.
• Completely different; incongruous.

Stochasticity, Heterogeneity, and Variation

Variation – spatial, temporal, individual, demographic, sampling

Stochasticity – including variation in a model, usually done as a stochastic process
So What’s a Deterministic Model?

Deterministic – The philosophical doctrine that every state of affairs, including every human event, act, and decision is the inevitable consequence of antecedent states of affairs.

Deterministic model – the outcome (at any time step) is determined solely by the inputs; nothing is left to chance. In deterministic models, vial rates (b, d, i, e) or R, λ are constant.

\[
N(t+1) = N(t) * (1+R) \Rightarrow N(t) = N(0) * (1+R)^t
\]
Types of Stochasticity

Sampling Variation – results from our inability to measure the population without error (we observe \hat{N} and not N).

Process Variation - Variation through time and space of the true population size. Variation in the true population size is termed process variation, because of stochasticity in the population growth process.

Sampling Variation

1. Sampling variation is confounded with demographic variation
2. We do not include sampling variation in population models
3. Measure - spatial, temporal, and individual variation, plus demographic + sampling variation sum

Why is there this measuring problem???
Types of Stochasticity

Sampling Variation – results from our inability to measure the population without error (we observe \hat{N}, and not N).

Process Variation - Variation through time and space of the true population size. Variation in the true population size is termed process variation, because of stochasticity in the population growth process.

Process Variation

1. Temporal variation (environmental)
2. Spatial (environmental)
3. Demographic (Bernoulli / binomial)
4. Individual heterogeneity (phenotypic & genotypic)
Temporal Variation

Annual variation
such as typical annual differences in weather

Catastrophes
such as severe storms or fire

How important is temporal variation?
Modeling Temporal Heterogeneity

- If possible, take advantage of historical data to find extremes
- Model vial rates (b, d, i, e) or R, λ as random variables
- Normal or beta distribution commonly used

Demographic Variation

- Internal rather than external
- Chance variation in actual fates of different individuals within a period
- Like randomness in coin flip
- “Fixed”
- Can not separate from sampling variation
Small populations can go extinct due to demographic variation alone – but the population has to be REALLY SMALL.

The cut-off below which you must really worry about the effects of demographic stochasticity is often estimated as ~20 individuals per class or ~100 individuals total (Morris and Doak 2002).
Modeling Demographic Heterogeneity

• **Continuous Models**
 – Time to next birth or death modeled as Poisson process

• **Discrete Models (Annual)**
 – **Individual based**
 • whether individual gives birth or dies modeled as Bernoulli process
 – **Population based**
 • number born (added to population) modeled as binomial process
 • number die (subtracted from population) modeled as binomial process

Individual Variation

• Lifelong, phenotypic and genotypic
How important is individual variation?

![Graph showing persistence (%) vs individual SD with different N0 values]

Modeling Individual Heterogeneity

- Based on individual survival and fecundity
- Including in a model via a covariate?
Required for Population Model

1. DATA!
2. Population model (Discrete? Density Independent?)
3. Include temporal variation
4. Include spatial variation
5. Include individual variation
6. Include demographic variation