1.) Compute the tensor products:
 a.) $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$.
 b.) $\mathbb{Q}[x] \otimes_{\mathbb{Q}} \mathbb{C}$.
 c.) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.

2.) Suppose that a rectangle in the plane \mathbb{R} with sides parallel to the axes of length a, b is subdivided into smaller rectangles R_i with sides parallel to the axes, of lengths a_i, b_i for some $i \in \{1, \ldots, n\}$. (Not all of the R_i need reach the boundary of R.)

 Show that $a \otimes b = \sum_{i=1}^{n} a_i \otimes b_i$ in $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$.

3.) Let V and W be vector spaces over a field k. Denote by $\text{BLF}(V)$ the vector space of k-bilinear functions $f : V \times V \to k$.

 a.) Show that there are natural linear maps:
 $\Phi : V^* \otimes W \to \mathcal{L}_k(V, W)$ such that $\Phi(\ell \otimes w)(v) = \ell(v) w$;
 $\Psi : V^* \otimes V^* \to \text{BLF}(V)$ such that $\Psi(\ell \otimes \ell')(v, v') = \ell(v) \ell(v')$;
 $T : V^* \otimes V \to k$ such that $T(\ell \otimes v) = \ell(v)$.

 b.) Prove that Φ and Ψ are injective.

 c.) Prove that when V, W are finite dimensional, then Φ and Ψ are isomorphisms.

4.) Dummit and Foote, p. 455, #3.
 (Image of Sym_2)

5.) Dummit and Foote, p. 455, #10.
 (Identifying $\mathcal{A}^k(M)$)

6.) Dummit and Foote, p. 455, #13.
 (Symmetric and alternating 2-tensors)