A new estimate of climate sensitivity using Last Glacial Maximum model-data constraints that includes parametric, feedback, and proxy uncertainties

David J. Ullman1,2, Andreas Schmittner2, Nathan M. Urban3
1Department of Geosciences, Northland College
2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
3Los Alamos National Laboratory

Introduction

As the most recent period of large climate change, the Last Glacial Maximum (LGM) has been a useful target for analysis by model-data comparison. In addition, significant changes in greenhouse gas forcing across the last deglaciation and the relative wealth of LGM temperature reconstructions by proxy data provide a potentially useful opportunity to quantify equilibrium climate sensitivity (ECS), the change in global mean surface air temperature due to a doubling of atmospheric CO₂. ECS is in part defined by the radiative forcing of CO₂, but the amplifying (dampening) nature of positive (negative) feedbacks in the climate system play a large role in how global mean temperature will respond to a change in forcing. Uncertainties in both the proxy data and climate feedbacks must be considered in a LGM-based assessment of ECS. Here, we present a new LGM-based assessment of ECS using the latter approach along with a simple linear parameterization of the longwave and shortwave cloud feedbacks derived from the CMIP5/PMIP3 results applied to the University of Victoria Earth System Intermediate Complexity model (UVIC).1,2

LGM: 2xCO₂ ensemble

We conducted 280 paired simulations of the LGM and a doubling of CO₂ (2xCO₂) in which we adjust model ECS across a range of possibilities. The LGM simulations are used to compare with proxy data, while the 2xCO₂ simulations are used to estimate ECS. In addition, we have sampled the range of uncertainty in other model parameters that potentially impact global mean temperature:

- **Ensemble Member Values**
 - **Climate Sensitivity**: 0.5 - 7.5 °C
 - **GCM Forcings**: from 7 models in the CMIP5/PMIP3 archive
 - **Anomalous Diffusion Factor**: 0 - 0.09 °C⁻¹
 - **Global Dust Forcing**: 0.0 - 2.0 W m⁻²
 - **Snow Albedo**: 0.7 - 0.8

Simulation Results

The ensemble resulted in a large variety of LGM and 2xCO₂ climate states. However, 77 of the ensemble members led to a runaway ice-albedo feedback during the LGM simulation, mostly under high climate sensitivity ensemble states. Such a “snowball earth” scenario is inconsistent with the geologic record for the LGM; therefore such failed simulations were discarded from subsequent analysis.

Conclusions

- New parameterization of cloud feedbacks applied in UVIC generally captures the relative range of CMIP5/PMIP3 top of the atmosphere feedbacks, although absolute magnitude of feedbacks may be slightly diminished.
- Ensemble of LGM and 2xCO₂ simulations with different ECS leads to a large variety of climate states, some of which do not match proxy data synthesis.
- Ensemble results indicate an ECS range of 1.3 - 5.9 K (95% confidence), suggesting the incorporation of cloud feedback model spread from CMIP5/PMIP3 greatly increases the uncertainty from the IPCC3 estimate of 1.5 - 4.5 K. Higher ECS values cannot be ruled out.
- There may be a possible threshold in LGM AMOC for global temperature anomalies lower than -6 °C, below which the model shows a large reduction in AMOC, consistent with other models.14

References

7. Stouffer, R. J., Nat. Geosci. 9, 467 (2016).