Carbon Isotopes Support Atlantic Meridional Overturning Circulation Decline as a Trigger for Early Deglacial CO$_2$ Rise

A. Schmittner1 and D. C. Lund2

[1]{College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon}
[2]{Department of Marine Sciences, University of Connecticut}

Correspondence to: A. Schmittner (aschmitt@coas.oregonstate.edu)

Abstract

The mechanism for the observed initial rise of atmospheric CO$_2$ during the last deglaciation remains unknown. Most recent hypotheses invoke southern hemisphere processes such as shifts in mid-latitude westerly winds. Here we compare simulations from a global, coupled climate-biogeochemistry model including carbon isotopes (δ^{13}C) with a synthesis of high-resolution deep sea δ^{13}C reconstructions as well as ice core data. The reconstructions from Heinrich Stadial Event 1 (HS1, ~19-15 ka BP) are consistent with model simulations of a large multi-millennial reduction of the Atlantic Meridional Overturning Circulation (AMOC). Our results suggest that the rise in atmospheric CO$_2$ and decrease in its δ^{13}C composition (δ^{13}C$_{CO2}$) observed during the early deglacial may have been caused by an AMOC induced decline of the ocean’s biologically sequestered carbon storage without the need to invoke changes in southern hemisphere winds.
1 Introduction

Earth’s transition from the Last Glacial Maximum (LGM), 23-19 ka BP (thousand years before the present), into the modern warm period of the Holocene (10-0 ka BP) remains enigmatic (Denton et al., 2006). Evidence of early warming of the Southern Hemisphere and atmospheric CO$_2$ increase (Petit et al., 1999; Denton et al., 2010) has prompted hypotheses of a southern hemisphere trigger for the deglaciation (Stott et al., 2007; Timmermann et al., 2009). But the rise in atmospheric CO$_2$, although an important forcing for deglacial global warming (Shakun et al., 2012), remains unexplained. Various mechanisms have been proposed. Prominent recent studies suggest wind changes in the Southern Ocean (Anderson et al., 2009; Tschumi et al., 2011; Denton et al., 2010) or changes in the North Pacific circulation (Menviel et al., 2014).

Others have suggested that the deglaciation was initiated by a collapse of the Atlantic Meridional Overturning Circulation (AMOC) caused by melting of northern hemisphere ice sheets (Denton et al., 2010; He et al., 2013; Shakun et al., 2012; Clark et al., 2004) and abrupt North Atlantic climate changes (Broecker et al., 1985). This idea has appeal since the AMOC is known from theory to exhibit multiple steady states with the possibility of rapid transitions between them (Stommel, 1961). Moreover, AMOC variations are consistent with the observed antiphasing of surface temperatures between the hemispheres (Schmittner et al., 2003; Shakun et al., 2012), evidence for ITCZ migration (Menviel et al., 2008), and atmospheric CO$_2$ increase (Schmittner and Galbraith, 2008). However, surface temperatures, rainfall patterns, and atmospheric gas concentrations alone do not allow robust inferences on the AMOC (Kurahashi-Nakamura et al., 2014) and evidence from the deep ocean for deglacial circulation variations remains sparse. One widely cited record of Protactinium-Thorium ratios (231Pa/320Th) from the subtropical North Atlantic has been interpreted as AMOC collapse around 19-18 ka BP followed by a rapid resumption ~15 ka BP into the warm Boelling/Allerod period (McManus et al., 2004). However, this interpretation has been questioned (Keigwin and Boyle, 2008) and a subsequent set of 231Pa/320Th records (Gherardi et al., 2005) suggested that a complete AMOC cessation during HS1 was unlikely. Moreover, our understanding of 231Pa/230Th in the modern ocean continues to evolve (Anderson and Hayes, 2013) and inferences on the basin or global scale circulation from a single site require validation with multiple proxies from a range of oceanographic locations.
Deep sea δ^{13}C reconstructions are more common and the processes governing δ^{13}C are better understood (Schmittner et al., 2013). Here we compile deep ocean δ^{13}C reconstructions from the early deglacial and compare them with model simulations of δ^{13}C changes caused by AMOC variations in order to test the hypothesis that the AMOC was reduced during HS1. We also compare our model results to observations of atmospheric CO$_2$ concentrations and its δ^{13}C values in order to assess mechanisms of the early deglacial CO$_2$ rise.

2 Methods

We have compiled 21 published deep ocean records covering the early deglacial at high temporal resolution (Tab. 1). Mostly published age models are used, which may have considerable (O(1 ka)) uncertainties. However, quantification of age uncertainties and their effect on the results are beyond the scope of this paper.

We employ the Model of Ocean Biogeochemistry and Isotopes (MOBI 1.4), a coupled climate-biogeochemical system that includes δ^{13}C cycling in the three-dimensional ocean, land, and atmosphere to explore the effect of AMOC variations on δ^{13}C cycling (see appendix for a more detailed model description). MOBI’s ocean distribution of δ^{13}C$_{DIC}$ in dissolved inorganic carbon (DIC) is consistent with modern water column observations (Schmittner et al., 2013). It is embedded in the University of Victoria climate model of intermediate complexity version 2.9 and run into a pre-industrial equilibrium with prognostic atmospheric CO$_2$ and δ^{13}C$_{CO_2}$. Subsequently four numerical experiments, each ~3,500 years long, have been conducted with varying amplitudes (0.05 Sv, 0.1 Sv, 0.15 Sv, and 0.2 Sv; referred to as FW0.05, FW0.1, FW0.15, and FW0.2, respectively; Sv = Sverdrup = 10^6 m3/s) of a stepwise, 400 year long freshwater input to the North Atlantic (Fig. 1A). Note that these are idealized experiments, designed to examine only how AMOC variations impact the global δ^{13}C distribution. We do not attempt realistic deglacial simulations. However, it is well known that the δ^{13}C distribution of the LGM ocean (Curry and Oppo, 2005) and atmospheric CO$_2$ concentrations (Parrenin et al., 2013) were different from the pre-industrial. In order to account for these differences in initial conditions our data-model comparison focuses on anomalies rather than absolute values.
3 Results

3.1 Simulated Carbon Cycle Changes

The AMOC reduces in all experiments (Fig. 1B). However, in FW0.05 and FW0.1 the reduction is reversible and after hosing is stopped the AMOC quickly returns to its initial state with negligible effects on atmospheric CO$_2$ (Fig. 1C). In experiments FW0.15 and FW0.2, on the other hand, the AMOC collapses permanently and CO$_2$ starts to increase about 500 years after the start of the hosing. CO$_2$ continues to increase gradually by ~25 ppm until year 2,000, after which its rate of change slows. The amplitude and rate of change of the simulated CO$_2$ increase agrees well with measurements of early deglacial air recovered from Antarctic ice (Parrenin et al., 2013).

The simulated atmospheric CO$_2$ increase in FW0.15 and FW0.2 is due to a release of biologically sequestered carbon from the deep ocean (Figs. 2, 3) consistent with previous results and theory (Schmittner and Galbraith, 2008; Ito and Follows, 2005; Marinov et al., 2008a; Marinov et al., 2008b). Initially Net Primary Production (NPP) declines within a few hundred years from 64 GtC/yr to 54 GtC/yr consistent with Schmittner (2005, not shown), which reduces the production of dissolved organic carbon (DOC), whereas dissolved inorganic carbon increases initially until around year 600, after which it starts to decline. By model year 3,500 the ocean has lost ~120 PgC (Fig. 2D) in FW0.15 most of which (~90 PgC) due to DIC, and less (~30 PgC) due to DOC. The ocean’s DIC loss is caused by a reduced efficiency of the biological pump as indicated by the large loss of remineralized DIC (~400 PgC; Fig. 2G) most of which is due to less organic matter oxidation (DIC$_{org}$; Fig. 3), whereas it is buffered by the increase in preformed DIC due to rising surface ocean DIC and atmospheric CO$_2$.

3.2 Simulated Carbon Isotope Changes

Because biologically sequestered, organic carbon is isotopically light ($\delta^{13}C_{org} = -20\%o$) its loss increases deep ocean δ^{13}C of DIC (δ^{13}C$_{DIC}$) by ~0.06‰ (Fig. 2F) and decreases δ^{13}C$_{DIC}$ (by ~0.03‰) in the surface ocean and δ^{13}C$_{CO2}$ by ~0.25‰ in the atmosphere (Fig. 1D). Modeled land carbon storage increases (Fig. 2A) and its average δ^{13}C$_L$ decreases (Fig. 2C), implying that land cannot be the cause of the atmospheric changes. The simulated
atmospheric $\delta^{13}C_{CO2}$ decline in models FW0.15 and FW0.2 is consistent, both in amplitude and rate of change, with ice core measurements (Fig. 1D; Schmitt et al., 2012).

The simulated pre-industrial (model year 0; Fig. 4A-C) distribution of $\delta^{13}C_{DIC}$ in the ocean is characterized by high values in the surface and deep North Atlantic and low values in the deep North Pacific, consistent with a previous model version and observations (Schmittner et al., 2013). Sinking of well equilibrated surface waters causes high values in the deep North Atlantic, whereas aging and accumulation of isotopically light respired organic matter progressively decreases $\delta^{13}C_{DIC}$ as deep waters flow into the South Atlantic, and further into the Indian and Pacific Oceans. Thus, the modern inter-basin difference in deep water $\delta^{13}C_{DIC}$ is caused by the interbasin MOC. Hence, as the AMOC collapses, the $\delta^{13}C_{DIC}$ difference between North Atlantic and North Pacific deep waters is reduced (Fig. 4D-F).

Differences between years 2,500 and 0 (Fig. 4G-I) show the largest $\delta^{13}C_{DIC}$ decreases at intermediate depths (1-2.5 km) in the northern North Atlantic. Anomalies decrease further south but a pronounced minimum emerges at the depth of North Atlantic Deep Water (NADW; 2-3 km) in the South Atlantic with positive anomalies below, at the depth of Antarctic Bottom Water, and above, at the depth of Antarctic Intermediate Water. South of 40°S in the Atlantic as well as in the Indian and Pacific oceans $\delta^{13}C_{DIC}$ increases everywhere below ~500 m due to reduced export of 13C-depleted carbon from the photic zone. Weakening of the biological pump causes surface ocean δ^{13}C to decrease by 0.2-0.4‰ in the Indian and Pacific basins, possibly explaining planktonic δ^{13}C minima on glacial terminations (Spero and Lea, 2002). The deep ocean signal dominates the global mean $\delta^{13}C_{DIC}$ increase of 0.04‰ by year 2,500 (Fig. 1H). In the North Pacific $\delta^{13}C_{DIC}$ shows the largest increase around 1 km depth owing to reduced stratification and intensified intermediate water formation, which decreases the amount of respired carbon there. Although changes in remineralized δ^{13}C ($\delta^{13}C_{rem}$; Fig. 5) dominate the spatial variations of the total $\delta^{13}C_{DIC}$ changes, preformed δ^{13}C ($\delta^{13}C_{pre}$) variations are notable, particularly in the Atlantic.

3.3 Observed Carbon Isotope Changes During HS1

Observations from the North Atlantic show large $\delta^{13}C_{DIC}$ decreases early in the deglaciation (Fig. 6A-E; Fig. 7A). The largest amplitudes (~1‰) are found in high-resolution records
from the northern North Atlantic (61°N) at intermediate (1.3-1.6 km) depths (Praetorius et al., 2008; Rickaby and Elderfield, 2005; Thornalley et al., 2010). Further south and in deeper water the δ^{13}C$_{\text{DIC}}$ decrease is smaller (-0.4 to -0.7‰) (Vidal et al., 1997; Hodell et al., 2010; Zahn et al., 1997; Skinner and Shackleton, 2004; Labeyrie et al., 2005; Zahn and Stuber, 2002). Changes simulated at the same locations by model experiments FW0.15 and FW0.2, which exhibit multi-millennial AMOC collapses, are generally similar in amplitude, albeit somewhat larger. Despite similar AMOC evolutions model FW0.15 shows smaller amplitudes than model FW0.2, in better agreement with the reconstructions illustrating the local effect of the freshwater forcing. The overall spatial distribution of the observed δ^{13}C$_{\text{DIC}}$ changes, with largest amplitudes at intermediate depths in the northern North Atlantic and decreasing further south and in deeper waters, is in best agreement with the results from model FW0.15 (Figs. 6, 7; Tab. 2).

A new dataset from the Brazil Margin in the South Atlantic (Fig. 6F-K; Fig. 8) (Tessin and Lund, 2013; Lund et al., submitted) shows increasing δ^{13}C$_{\text{DIC}}$ by ~0.35‰ at 1.1 km depth and decreasing δ^{13}C$_{\text{DIC}}$ by ~0.5‰ between 1.6 and 2.1 km depth, whereas deeper in the water column the data are noisier without a clear trend. Model FW0.15’s initial δ^{13}C$_{\text{DIC}}$ values at the Brazil Margin are higher than the observations’ mainly for two reasons (Fig. 8). First, the model does not consider the whole ocean lowering of δ^{13}C$_{\text{DIC}}$ due to the reduction in land carbon during the LGM and second, it does not include the shoaling of NADW and very low δ^{13}C$_{\text{DIC}}$ values in South Atlantic bottom waters (Curry and Oppo, 2005; Gebbie, 2014). Thus the simulated δ^{13}C$_{\text{DIC}}$ decrease extends deeper than in the observations and shows a substantial reduction below 2.2 km. However, the reconstructed pattern of opposing δ^{13}C signal between shallow-intermediate and mid-depths agrees well with the simulated changes due to large AMOC reduction (Fig. 7). The rapid initial increase at intermediate depths appears to be influenced by two factors. First, reduced return flow of low δ^{13}C$_{\text{DIC}}$ from the Indian ocean (not shown). Second, less upwelling of low δ^{13}C$_{\text{DIC}}$ deep water into the upper and surface Southern Ocean leads to a deepening of the high δ^{13}C$_{\text{DIC}}$ Antarctic Intermediate and Subantarctic Mode Waters, which, together with decreased stratification and deeper mixed layers (Schmittner et al., 2007), increases δ^{13}C$_{\text{DIC}}$ by ~0.3‰ at 1.2 km depth in all ocean basins at mid southern latitudes (Fig. 4,G-I).
The simulated $\delta^{13}C_{\text{DIC}}$ increase at 1.2 km depth in the southwest Pacific ($\sim 0.5\%$) and at 1.6 km depth in the tropical Indian Ocean ($\sim 0.3\%$) agree well with local reconstructions (Fig. 6P,O). In deep waters of the Southern and Indian Oceans the reconstructions are noisy and no clear trend can be identified (Fig. 6L-N).

3.4 Discussion and Conclusions

Taken together the deep ocean $\delta^{13}C_{\text{DIC}}$ reconstructions are consistent with a severe and prolonged, multi-millennial AMOC reduction during HS1. Model FW0.15 fits the reconstructions best as indicated by a high correlation coefficient ($r_{\text{FW0.15}}=0.89$; Fig. 9; Tab. 2) and low root-mean-squared error ($\text{rms}_{\text{FW0.15}}=0.38$). However, $\delta^{13}C_{\text{DIC}}$ changes in the North Atlantic are larger in the model than in the reconstructions. One reason for this discrepancy may be that AMOC changes during HS1 were smaller than those simulated (Gherardi et al., 2005; Lund et al., submitted). A second reason could be the mismatch in initial conditions. If the LGM AMOC was weaker and shallower than in the model’s pre-industrial simulation as indicated by a number of reconstructions (Lynch-Stieglitz et al., 2007; Gebbie, 2014), the model would overestimate changes in volume fluxes and perhaps carbon isotopes even if a complete AMOC collapse occurred during HS1. A third reason may be dampened records of the actual $\delta^{13}C_{\text{DIC}}$ changes by smoothing and averaging due to bioturbation, and/or age model errors. This may affect particularly low resolution sediment cores as indicated by reduced agreement with lower resolution data from a previous study (Sarnthein et al., 1994 ($r_{\text{FW0.15}}=0.79$; $\text{rms}_{\text{FW0.15}}=0.60$; Fig. 9). Resolving the likelihood of these different possibilities will be an important task for future research.

Our results support qualitatively McManus et al.’s (2004) interpretation of the 231Pa/230Th record, but more work is needed for an improved quantitative assessment. We suggest that an AMOC decline during HS1 could have caused the observed rise in atmospheric CO_2 and the decrease in $\delta^{13}C_{\text{CO}_2}$ by modulating the global efficiency of the ocean’s biological pump. This is in contrast with ideas that invoke Southern Ocean (Anderson et al., 2009; Tschumi et al., 2011) or North Pacific (Menviel et al., 2014) mechanisms for the early deglacial CO_2 rise. If confirmed by future simulations with more realistic initial conditions and forcings, the deglacial mystery may shift towards its later stages, when the AMOC resumes but CO_2 keeps increasing, potentially related to the late deglacial rise in deep South Atlantic $\delta^{13}C_{\text{DIC}}$ (Lund et al., submitted), which will require a different mechanism from the one discussed here.
Appendix A: Model Description

The University of Victoria Earth System Climate Model (UVic ESCM) (Weaver et al., 2001) is used in version 2.9 (Eby et al., 2009). It consists of a coarse resolution (1.8×3.6°, 19 vertical layers) ocean general circulation model coupled to a one layer atmospheric energy-moisture balance model and a dynamic thermodynamic sea ice model, both at the same horizontal resolution. The model is forced with seasonally varying solar irradiance at the top-of-the-atmosphere, cloud albedo, wind stress and moisture advection velocities. This seasonal forcing does not change between different years. Atmospheric CO₂ and δ¹³C are calculated in a single box assuming rapid mixing.

A1 Description of Land Carbon Isotopes (δ¹³C and δ¹⁴C) Model

The land carbon isotopes model has not been published before. Therefore we provide a description and evaluation here. It is based on TRIFFID, the “Top-down Representation of Interactive Foilage and Flora Including Dynamics” dynamic vegetation model by Cox (2001), as modified by Meissner et al. (Meissner et al., 2003) and Matthews et al. (Matthews et al., 2004), which solves prognostic equations for total vegetation carbon density

\[C_v = 12C_v + 13C_v \] and fractional coverage \(v_i \in (0,1) \) of five plant functional types (PFTs; \(i=1,...,5 \)):

\[\frac{\partial}{\partial t} (C_v, v_i) = v_i \Pi_i - v_i \Lambda_i, \quad (1) \]

where \(\Pi_i \) is Net Primary Production (NPP) and \(\Lambda_i \) is litter production, which enters the soil carbon pool. Total soil carbon density is calculated according to

\[\frac{\partial}{\partial t} C_s = \sum_i \Lambda_i - R_s, \quad (2) \]

We added prognostic equations for the heavy carbon isotopes \(^{13}C \) and \(^{14}C \) to both vegetation and soil

\[\frac{\partial}{\partial t} (^{13}C, v_i) = \gamma^{13}_\Pi v_i \Pi_i - \gamma^{13}_\Lambda v_i \Lambda_i, \quad (3) \]

and soil

\[\frac{\partial}{\partial t} ^{13}C_s = \sum_i \gamma^{13}_\Lambda \Lambda_i - \gamma^{13}_R R_s, \quad (4) \]
\[
\frac{\partial}{\partial t} (^{14}C_{v,i}) = \gamma_{\Pi}^{14}v_i \Pi_i - \gamma_{\Lambda}^{14}v_i \Lambda_i - \kappa v_i ^{14}C_{v,i}, \quad \text{and} \quad (5)
\]

\[
\frac{\partial}{\partial t} ^{14}C_i = \sum_j \lambda_{\Lambda,j} \Lambda_i - \gamma_{r}^{14}R_i - \kappa ^{14}C_{s,j}, \quad (6)
\]

where fractionation during photosynthesis is indicated by factors

\[
\gamma_{\Pi}^{13} = \frac{\beta_{\Pi}^{13}}{1 + \beta_{\Pi}^{13}}, \quad \text{and} \quad (7)
\]

\[
\beta_{\Pi}^{13} = \alpha_{\Pi}^{13} R_{A}^{13}, \quad \text{and} \quad (8)
\]

where

\[
R_{A}^{13} = \frac{^{13}C_{CO_2}}{^{12}C_{CO_2}} \quad (9)
\]

is the heavy to light isotope ratio of atmospheric CO\(_2\).

Fractionation factors are different for C3 and C4 plants

\[
\alpha_{\text{NP},i}^{13} = \begin{cases}
0.979, \text{ for C3} \\
0.993, \text{ for C4}
\end{cases}, \quad (10)
\]

which corresponds to a fractionation of \(\varepsilon^{13} = (1 - \alpha^{13}) = -7\% \) for C4 plants and \(\varepsilon^{13} = -21\% \) for C3 plants (O'Leary, 1988).

No fractionation occurs during litter production or respiration:

\[
\gamma_{\Lambda}^{13} = \frac{\beta_{\Lambda}^{13}}{1 + \beta_{\Lambda}^{13}} \quad (11)
\]

\[
\beta_{\Lambda}^{13} = R_{i,j}^{13} = \frac{^{13}C_v}{C_v - ^{13}C_v} \quad (12)
\]

\[
\gamma_{R}^{13} = \frac{\beta_{R}^{13}}{1 + \beta_{R}^{13}} \quad (13)
\]
\[\beta_{s}^{13} = R_{s}^{13} = \frac{13C}{C - 13C} . \] (14)

For radiocarbon eqns. (5) and (6) radioactive decay is considered though \(\kappa = 1.210 \times 10^{-4} \text{a}^{-1} \), which corresponds to a half life of 5730 years and twice the fractionation during NPP is assumed \(\epsilon^{14} = 2\epsilon^{13} \), such that

\[\alpha_{NPP,i}^{14} = \begin{cases} 0.958, & \text{for C3} \\ 0.986, & \text{for C4} \end{cases} . \] (15)

The simulated spatial distribution of average \(\delta^{13}C \) (Fig. A1) varies from -13‰ in regions dominated by C4 grasses such as North Africa and Australia to -27‰ in most other regions, which are dominated by C3 plants, due to the differences in fractionation factors for C3 and C4 plants used in the model. This distribution is broadly consistent with previous independent estimates (Still and Powell, 2010; Powell et al., 2012).

A2 Description of Ocean Carbon Isotope Model

We use the Model of Ocean Biogeochemistry and Isotopes (MOBI) version 1.4. The ocean carbon isotope component is described in detail in Schmittner et al. (2013). Here we only describe differences with respect to that publication. The physical UVic model version was updated to version 2.9 (Schmittner et al. 2013 used 2.8). The ocean ecosystem model has been modified by changing zooplankton grazing, using a slightly different approach to consider iron limitation of phytoplankton growth as described in detail in (Keller et al., 2012). This model gives very similar results to model FeL in (Schmittner et al., 2013).

Implementation of the carbon isotope equations have been changed from the “alpha” formulation to the “beta” formulation. In the “alpha” formulation the change in the heavy (rare) isotope carbon density \(^{13}C \) (in mol C m\(^{-3}\)) of the product (e.g. phytoplankton) of some process (e.g. photosynthesis)

\[\frac{\partial}{\partial t} ^{13}C = \alpha R^{13} \frac{\partial}{\partial t} ^{12}C = \alpha R^{13} \frac{\partial}{\partial t} C , \] (16)

is calculated as the product of the total carbon change \(\partial C / \partial t \) times the fractionation factor \(\alpha \) for that process times the heavy to light isotope ratio of the source (e.g. sea water DIC) \(R^{13} = \frac{^{13}C}{^{12}C} \). This formulation assumes total carbon
\[C = ^{12}C + ^{13}C \approx ^{12}C, \quad (17) \]

is equal to \(^{12}C\), which is a good approximation since the is equal to \(^{13}C\) is usually two orders of magnitude smaller than \(^{12}C\).

However, assumption (17) can be avoided by using the “beta” formulation, in which the heavy isotope change is calculated according to

\[\frac{\partial}{\partial t} ^{13}C = \beta ^{13} \frac{\partial}{\partial t} C, \quad (18) \]

where \(\beta ^{13} = \alpha ^{13} R ^{13}\).

In order to convert isotope ratios to delta values

\[\delta ^{13}C = \left(\frac{R}{R_{st}} - 1 \right) \quad (19) \]

we now use the conventional standard ratio \(R_{st}^{13} = 0.0112372 \) instead of \(R_{st}^{13} = 1 \), which was used in (Schmittner et al., 2013). For radiocarbon \(R_{ad}^{14} = 1.17 \times 10^{-12} \) is used.

MOBI 1.4 includes dissolved organic carbon (DOC) cycling described in Somes et al. (in prep). The close agreement of the preindustrial \(\delta ^{13}C_{DIC}\) distributions with model FeL of (Schmittner et al., 2013) suggest that none of the changes described above have a major impact of the simulated \(\delta ^{13}C_{DIC}\).

A3 Sensitivity to Wind Changes

The model results discussed above did not include the effects of wind changes. Winds enter the UVic model in three ways:

1. Moisture advection velocities \(\mathbf{u}_q \) determine convergence of specific humidity and thus precipitation.
2. Wind stress \(\mathbf{\tau} \) supplies momentum to the surface ocean and sea ice.
3. Wind speed \(\mathbf{u} \) modulates air-sea exchange of heat, water, and gases (\(\text{CO}_2, \text{O}_2 \)).

In order to test the sensitivity of our results to these variables we performed three additional simulations, in which we use anomalies calculated from hosing experiments with the OSUVic model. The OSUVic model includes a fully coupled dynamical atmosphere at T42 resolution (Schmittner et al., 2011), whereas the other components are identical to the UVic model.
version 2.8 without dynamic vegetation. The wind anomalies are applied at model year 400 of
the FW0.15 simulation (blue dashed line in panel A of Fig. A2).

Fig. A2 shows that wind changes have only a modest impact on simulated carbon cycle and
isotope distributions. The largest effect is due to changes in moisture advection velocities,
which lead to a rapid decrease in vegetation and soil carbon around year 400. This causes a
rapid CO₂ increase by a few ppm and a rapid decrease of δ¹³C CO₂ by a few hundredths of a
permil. It also delays the oceanic carbon loss by a few hundred years. However, the multi-
millennial response and our conclusions are not impacted much by the wind changes.

Acknowledgements

AS has been supported by the National Science Foundation’s Marine Geology and
Geophysics program grant OCE-1131834.
References

He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner, B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation, Nature, 494, 81-85, 10.1038/nature11822, 2013.

Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J. R., Follows, M., and Mignone, B. K.: Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO(2), Global Biogeochem Cy, 22, -, 2008b.

CO2 and Antarctic Temperature During the Last Deglacial Warming, Science, 339, 1060-1063, 10.1126/science.1226368, 2013.

Praetorius, S. K., McManus, J. F., Oppo, D. W., and Curry, W. B.: Episodic reductions in bottom-water currents since the last ice age, Nat Geosci, 1, 449-452, 10.1038/ngeo227, 2008.

Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z. Y., Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49-54, Doi 10.1038/Nature10915, 2012.

Table 1: Sediment cores used in this study.

<table>
<thead>
<tr>
<th>Core</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Depth (m)</th>
<th>References</th>
<th>Age Model (if different)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP984</td>
<td>61°N</td>
<td>24°W</td>
<td>1,649</td>
<td>(Praetorius et al., 2008)</td>
<td></td>
</tr>
<tr>
<td>NEAP4K</td>
<td>61°N</td>
<td>24°W</td>
<td>1,627</td>
<td>(Rickaby and Elderfield, 2005)</td>
<td></td>
</tr>
<tr>
<td>RAPiD-10-1P</td>
<td>62°N</td>
<td>17°W</td>
<td>1,237</td>
<td>(Thornalley et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>NA87-22</td>
<td>55°N</td>
<td>14°W</td>
<td>2,161</td>
<td>(Vidal et al., 1997)</td>
<td>(Waelbroeck et al., 2011)</td>
</tr>
<tr>
<td>KN166-14-JPC-13</td>
<td>53°N</td>
<td>33°W</td>
<td>3,082</td>
<td>(Hodell et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>SO75-26KL</td>
<td>37°N</td>
<td>10°W</td>
<td>1,099</td>
<td>(Zahn et al., 1997)</td>
<td>(Waelbroeck et al., 2011)</td>
</tr>
<tr>
<td>MD99-2334K</td>
<td>37°N</td>
<td>10°W</td>
<td>3,146</td>
<td>(Skinner and Shackleton, 2004)</td>
<td></td>
</tr>
<tr>
<td>MD95-2037</td>
<td>37°N</td>
<td>32°W</td>
<td>2,159</td>
<td>(Labeyrie et al., 2005)</td>
<td>(Waelbroeck et al., 2011)</td>
</tr>
<tr>
<td>M35003-4</td>
<td>12°N</td>
<td>61°W</td>
<td>1,299</td>
<td>(Zahn and Stuber, 2002)</td>
<td>(Waelbroeck et al., 2011)</td>
</tr>
<tr>
<td>KNR159-5</td>
<td>27°S</td>
<td>46°W</td>
<td>1,105</td>
<td>(Lund et al., submitted; Curry and Oppo, 2005)</td>
<td></td>
</tr>
<tr>
<td>KNR159-5</td>
<td>27°S</td>
<td>46°W</td>
<td>1,268</td>
<td>(Tessin and Lund, 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Statistical indices of comparison for the reconstructed HS1 (15.5-16.5 ka BP) minus LGM (18.5-19.5 ka BP) ocean δ¹³C changes with those from the model simulations (model

<table>
<thead>
<tr>
<th></th>
<th>Location</th>
<th>Lat.</th>
<th>Long.</th>
<th>Δ¹³C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>KNR159-5 17JPC</td>
<td>27°S</td>
<td>46°W</td>
<td>1,627</td>
<td>(Tessin and Lund, 2013)</td>
</tr>
<tr>
<td>13</td>
<td>KNR159-5 33GGC</td>
<td>27°S</td>
<td>46°W</td>
<td>2,082</td>
<td>(Tessin and Lund, 2013)</td>
</tr>
<tr>
<td>14</td>
<td>KNR159-5 42JPC</td>
<td>27°S</td>
<td>46°W</td>
<td>2,296</td>
<td>(Tessin and Lund, 2013)</td>
</tr>
<tr>
<td>15</td>
<td>KNR159-5 30GGC</td>
<td>27°S</td>
<td>46°W</td>
<td>2,500</td>
<td>(Tessin and Lund, 2013)</td>
</tr>
<tr>
<td>16</td>
<td>KNR159-5 125GGC</td>
<td>27°S</td>
<td>46°W</td>
<td>3,589</td>
<td>(Tessin and Lund, 2013)</td>
</tr>
<tr>
<td>17</td>
<td>RC11-83</td>
<td>41°S</td>
<td>9°E</td>
<td>4,718</td>
<td>(Charles et al., 1996)</td>
</tr>
<tr>
<td>18</td>
<td>MD01-2588</td>
<td>41°S</td>
<td>25°E</td>
<td>2,907</td>
<td>(Ziegler et al., 2013)</td>
</tr>
<tr>
<td>19</td>
<td>74KL</td>
<td>14°N</td>
<td>57°E</td>
<td>3,212</td>
<td>(Sirocko et al., 1993)</td>
</tr>
<tr>
<td>20</td>
<td>NIOP905</td>
<td>10°N</td>
<td>52°E</td>
<td>1,580</td>
<td>(Jung et al., 2009)</td>
</tr>
<tr>
<td>21</td>
<td>MD97-2120</td>
<td>45°S</td>
<td>174°E</td>
<td>1,210</td>
<td>(Pahnke and Zahn, 2005)</td>
</tr>
</tbody>
</table>

1 * LGM was shifted 1.5 ka younger in order to be consistent with the timing of the other North Atlantic core’s δ¹³C decline.

3

4

5
The number of datapoints is $n=21$.

<table>
<thead>
<tr>
<th>Model</th>
<th>r</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW0.05</td>
<td>0.77</td>
<td>0.48</td>
</tr>
<tr>
<td>FW0.1</td>
<td>0.77</td>
<td>0.47</td>
</tr>
<tr>
<td>FW0.15</td>
<td>0.91</td>
<td>0.40</td>
</tr>
<tr>
<td>FW0.2</td>
<td>0.90</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Figure 1. Time series of (A) North Atlantic freshwater forcing, (B) AMOC response, (C) atmospheric CO$_2$ concentrations, (D) δ^{13}C of atmospheric CO$_2$ (solid) and global mean surface ocean δ^{13}C$_{DIC}$ (dashed) for four model simulations (color lines). Symbols in (C) and black curve (error estimates are shaded grey) in (D) show ice core measurements (Parrenin et al., 2013; 2012), respectively (bottom and right axes).
Figure 2. Simulated changes in global land (left) and ocean (right) carbon inventories (in PgC; 1 ppm = 2.1 PgC) and their averaged δ^{13}C (in permil) in model FW0.15. Changes in (A) land carbon $\Delta C_L = \Delta C_V + \Delta C_S$ (black) are due to vegetation ΔC_V (green) and soil ΔC_S (red) changes. Vegetation is composed of C3 and C4 plants, $C_V = C_3 + C_4$, but C4 plants contribute only a small fraction (B) to the total. Changes in C4 plant biomass (blue line in A) are negligible compared to those of C3 plants (difference between green and blue lines). Panel (C) shows biomass weighted mean δ^{13}C of the land

$\delta^{13}C_L = (\sum_i C_{V,i} \cdot \delta^{13}C_i + C_S \cdot \delta^{13}C_s) / (\sum_i C_{V,i} + C_s)$ (black), vegetation

$\delta^{13}C_V = (\sum_i C_{V,i} \cdot \delta^{13}C_i) / (\sum_i C_{V,i})$ (green), and soil $\delta^{13}C_s$ (red). Ocean carbon changes $\Delta C_O = \Delta DIC + \Delta DOC + \Delta POC$ (D, black) are due to dissolved organic (DOC, blue) and inorganic (DIC, red) carbon, and negligible changes in particulate organic carbon (POC, not shown). Total ocean $\delta^{13}C_O = (DIC \cdot \delta^{13}C_{DIC} + DOC \cdot \delta^{13}C_{DOC}) / (DIC + DOC)$ (F, black) is dominated by changes in $\delta^{13}C_{DIC}$ (red). $\delta^{13}C_{DOC}$ (blue line in panel E) changes play only a minor role for $\Delta \delta^{13}C_O$ as illustrated by the dashed black line in (F), which was calculated
assuming a constant $\delta^{13}C_{DOC}=-21.5\%$. However, the relative contribution of DOC to CO
decreases by about 10 %, which explains the difference between the solid red and dashed
black lines in panel F. DIC changes are further separated into remineralized (DIC_{rem},
$\Delta \delta^{13}C_{rem}$, purple) and preformed (DIC_{pre}, $\Delta \delta^{13}C_{pre}$, light blue) components in (G) and (H)
following Schmittner et al. (2014). All anomalies are shown relative to model year 0, at which
absolute numbers are $C_L=1,785$ PgC, $C_O=37,390$ PgC, $C_{DIC}=37,191$ PgC, $C_{DOC}=297$ PgC,
$C_{POC}=2$ PgC, $\delta^{13}C_{DIC}=0.72\%$, $\delta^{13}C_{DOC}=-21.5\%$.

8

9
Figure 3. Vertical profiles of globally horizontally averaged ocean DIC (top left) and $\delta^{13}C$ (bottom left) at years 0 (black) and 2,500 (red) of experiment FW0.15. Right panels show changes (year 2,500 minus year 0) in ΔDIC = ΔDIC$_{pre}$ + ΔDIC$_{rem}$ and ΔIC = ΔIC$_{pre}$ + ΔIC$_{rem}$ (green) as well as individual components preformed DIC$_{pre}$ and remineralized DIC$_{rem}$ = DIC$_{org}$ + DIC$_{CaCO_3}$. See (Schmittner et al., 2013) for the calculation of the individual terms. The differences between the blue and green lines are due to changes in preformed DIC and $\delta^{13}C$.
Figure 4. Zonally averaged distributions of $\delta^{13}C_{DIC}$ as a function of latitude and depth simulated by model FW0.15 in the Atlantic (left), Indian (center) and Pacific (right) ocean basins at model years 0 (A-C) and 2500 (D-F; A-F use top color scale), and the difference (G-I; bottom color scale). Red symbols in bottom panels denote locations of observations shown in Fig. 5.
Figure 5. Impact of AMOC collapse on $\delta^{13}C_{\text{pre}}$ (top) and $\delta^{13}C_{\text{rem}}$ (bottom). Zonally averaged changes between year 2500 and year 0 of model run FW0.15 in the Atlantic (left), Indian Ocean (center), and Pacific (right). Note the different color scales and isoline differences used.
Figure 6. Comparison of simulated (lines as in Fig. 1; left and top axes) and observed (symbols as in Fig. 4; right and bottom axes) δ¹³C_{DIC} timeseries in the North Atlantic (A-E), South Atlantic (F-L), Indian (M-O), and Pacific (P) oceans. If no numbers are given on the right axis the scale is identical to the left axis. If numbers are given on the right axis the scale is different but the range (max – min) is identical to that of the left axis. Note that different ranges of the vertical axis are used for the different columns, whereas within each column they are similar.
Figure 7. Heinrich Stadial 1 (16.5-15.5 ka BP) minus LGM (19.5-18.5 ka BP) difference in \(\delta^{13}C_{\text{DIC}}\) in the Atlantic (left) and Indian and Pacific (right) basins from our high-resolution synthesis of reconstructions averaged on the model grid (top) compared to model FW0.15 results (bottom; averages of model years 2,000 to 3,000 minus averages of model years -1,000 to 0.).
Figure 8. Simulated (solid; model FW0.15) and observed (dashed) vertical profiles of δ^{13}C$_{DIC}$ at the Brazil Margin in the South Atlantic before (black) and after (red) the AMOC collapse. Observations show 1 ka averages of smoothed (2 ka) data. Results for model FW0.2 are very similar to FW0.15 (not shown). However, models FW0.05 and FW0.1 show almost no changes from their initial (yr -500) distribution (not shown).
Figure 9. HS1 minus LGM change in $\delta^{13}C$ from ref (Sarnthein et al., 1994); blue) our high-resolution compilation (red) versus changes between years 0 and 2,500 predicted by model experiment FW0.15 at the same locations. The diagonal 1:1 line corresponds to a perfect match.
Figure A1. Simulated average pre-industrial land $\delta^{13}C$ distribution (model year 0). Each pool’s (five vegetation plant functional types, PFTs, and one soil, S, carbon compartment) $\delta^{13}C$ value was weighted by its mass in calculating the average as explained in figure caption 2. Desert regions with negligible vegetation carbon ($< 10 \text{ g/m}^2$) are shown in white.
Figure A2. Sensitivity to changes in winds. Experiment FW0.15 (red) is repeated with changes in moisture advection velocities u_q (light blue), u_q plus wind stress τ (green), and $u_q + \tau$ plus wind speed u (dark blue) calculated from the OSUVic model. See appendix A3 for more details.