Chapter 7: Computer and Network Security
Chapter Overview

- Introduction
- Hacking
- Malware
- Cyber crime and cyber attacks
- Online voting
7.1 Introduction

- Computers getting faster and less expensive
- Utility of networked computers increasing
 - Shopping and banking
 - Managing personal information
 - Controlling industrial processes
- Increasing use of computers → growing importance of computer security
7.2 Hacking
Hackers, Past and Present

- Original meaning of hacker: explorer, risk taker, system innovator
 - MIT’s Tech Model Railroad Club in 1950s
- 1960s-1980s: Focus shifted from electronics to computers and networks
 - 1983 movie WarGames
- Modern meaning of hacker: someone who gains unauthorized access to computers and computer networks
Obtaining Login Names, Passwords

- Eavesdropping
- Dumpster diving
- Social engineering
Password Dos and Don’ts

- Do not use short passwords.
- Do not use a word from the dictionary.
- Do not rely on substituting numbers for letters.
- Do not reuse passwords.
- Give ridiculous answers to security questions.
- Enable two-factor authentication if available.
- Have password recoveries sent to a secure email address.
Computer Fraud and Abuse Act

- Criminalizes wide variety of hacker-related activities
 - Transmitting code that damages a computer
 - Accessing any Internet-connected computer without authorization
 - Transmitting classified government information
 - Trafficking in computer passwords
 - Computer fraud
 - Computer extortion

- Maximum penalty: 20 years in prison and $250,000 fine
Sidejacking

- Sidejacking: hijacking of an open Web session by capturing a user’s cookie
- Sidejacking possible on unencrypted wireless networks because many sites send cookies “in the clear”
- Internet security community complained about sidejacking vulnerability for years, but ecommerce sites did not change practices
Case Study: Firesheep

- October 2010: Eric Butler released Firesheep extension to Firefox browser
- Firesheep made it possible for ordinary computer users to easily sidejack Web sessions
- More than 500,000 downloads in first week
- Attracted great deal of media attention
- Early 2011: Facebook and Twitter announced options to use their sites securely
Act Utilitarian Analysis

• Release of Firesheep led media to focus on security problem
• Benefits were high: a few months later Facebook and Twitter made their sites more secure
• Harms were minimal: no evidence that release of Firesheep caused big increase in identity theft or malicious pranks
• Conclusion: Release of Firesheep was good
Virtue Ethics Analysis

• By releasing Firesheep, Butler helped public understand lack of security on unencrypted wireless networks
• Butler’s statements characteristic of someone interested in protecting privacy
• Butler demonstrated courage by taking responsibility for the program
• Butler demonstrated benevolence by making program freely available
• His actions and statements were characteristic of someone interested in the public good
Kantian Analysis

- Accessing someone else’s user account is an invasion of their privacy and is wrong
- Butler provided a tool that made it much simpler for people to do something that is wrong, so he has some moral accountability for their misdeeds
- Butler was willing to tolerate short-term increase in privacy violations in hope that media pressure would force Web retailers to add security
- He treated victims of Firesheep as a means to his end
- It was wrong for Butler to release Firesheep
7.3 Malware
Viruses

- Virus: Piece of self-replicating code embedded within another program (host)
- Viruses associated with program files
 - Hard disks, floppy disks, CD-ROMS
 - Email attachments
- How viruses spread
 - Diskettes or CDs
 - Email
 - Files downloaded from Internet
One Way a Virus Can Replicate
Email Attachment with Possible Virus

The message contains Unicode characters and has been sent as a binary attachment.
How an Email Virus Spreads
Antivirus Software Packages

• Allow computer users to detect and destroy viruses
• Must be kept up-to-date to be most effective
• Many people do not keep their antivirus software packages up-to-date
• Consumers need to beware of fake antivirus applications
Worm

- Self-contained program
- Spreads through a computer network
- Exploits security holes in networked computers
How a Worm Spreads
The Internet Worm

- Robert Tappan Morris, Jr.
 - Graduate student at Cornell
 - Released worm onto Internet from MIT computer

- Effect of worm
 - Spread to significant numbers of Unix computers
 - Infected computers kept crashing or became unresponsive
 - Took a day for fixes to be published

- Impact on Morris
 - Suspended from Cornell
 - 3 years’ probation + 400 hours community service
 - $150,000 in legal fees and fines
Ethical Evaluation

- Kantian evaluation
 - Morris used others by gaining access to their computers without permission
- Social contract theory evaluation
 - Morris violated property rights of organizations
- Utilitarian evaluation
 - Benefits: Organizations learned of security flaws
 - Harms: Time spent by those fighting worm, unavailable computers, disrupted network traffic, Morris’s punishments
- Virtue ethics evaluation
 - Morris selfishly used Internet as experimental lab
 - He deceitfully released worm from MIT instead of Cornell
 - He avoided taking responsibility for his actions
- Morris was wrong to have released the Internet worm
Conficker Worm

- Conficker (a.k.a. Downadup) worm appeared 2008 on Windows computers
- Particularly difficult to eradicate
- Millions of copies of worm are circulating
- Purpose of worm still unknown
Cross-site Scripting

- Another way malware may be downloaded without user’s knowledge
- Problem appears on Web sites that allow people to read what others have posted
- Attacker injects client-side script into a Web site
- Victim’s browser executes script, which may steal cookies, track user’s activity, or perform another malicious action
Drive-by Downloads

- Unintentional downloading of malware caused by visiting a compromised Web site
- Also happens when Web surfer sees pop-up window asking permission to download software and clicks “Okay”
- Google Anti-Malware Team says 1.3 percent of queries to Google’s search engine return a malicious URL somewhere on results page
Trojan Horses and Backdoor Trojans

- Trojan horse: Program with benign capability that masks a sinister purpose
- Backdoor Trojan: Trojan horse that gives attack access to victim’s computer
Rootkits

- Rootkit: A set of programs that provides privileged access to a computer
- Activated every time computer is booted
- Uses security privileges to mask its presence
Spyware and Adware

- **Spyware**: Program that communicates over an Internet connection without user’s knowledge or consent
 - Monitor Web surfing
 - Log keystrokes
 - Take snapshots of computer screen
 - Send reports back to host computer

- **Adware**: Type of spyware that displays pop-up advertisements related to user’s activity

- **Backdoor Trojans** often used to deliver spyware and adware
Bots

• Bot: A kind of backdoor Trojan that responds to commands sent by a command-and-control program on another computer
• First bots supported legitimate activities
 – Internet Relay Chat
 – Multiplayer Internet games
• Other bots support illegal activities
 – Distributing spam
 – Collecting person information for ID theft
 – Denial-of-service attacks
Botnets and Bot Herders

• Botnet: Collection of bot-infected computers controlled by the same command-and-control program
• Some botnets have over a million computers in them
• Bot herder: Someone who controls a botnet
Defensive Measures

- Security patches: Code updates to remove security vulnerabilities
- Anti-malware tools: Software to scan hard drives, detect files that contain viruses or spyware, and delete these files
- Firewall: A software application installed on a single computer that can selectively block network traffic to and from that computer
7.4 Cyber Crime and Cyber Attacks
Phishing and Spear-phishing

- **Phishing**: Large-scale effort to gain sensitive information from gullible computer users
 - At least 67,000 phishing attacks globally in second half of 2010
 - New development: phishing attacks on Chinese e-commerce sites

- **Spear-phishing**: Variant of phishing in which email addresses chosen selectively to target particular group of recipients
SQL Injection

• Method of attacking a database-driven Web application with improper security
• Attack inserts (injects) SQL query into text string from client to application
• Application returns sensitive information
Denial-of-service and Distributed Denial-of-service Attacks

- Denial-of-service attack: Intentional action designed to prevent legitimate users from making use of a computer service
- Aim of a DoS attack is not to steal information but to disrupt a server’s ability to respond to its clients
- Distributed denial-of-service attack: DoS attack launched from many computers, such as a botnet
Cyber Crime

• Criminal organizations making significant amounts of money from malware
• Jeanson James Ancheta
• Pharmamaster
• Albert Gonzalez
• Avalanche Gang
The Rise and Fall of Blue Security
Part I: The Rise

- Blue Security: An Israeli company selling a spam deterrence system
- Blue Frog bot would automatically respond to each spam message with an opt-out message
- Spammers started receiving hundreds of thousands of opt-out messages, disrupting their operations
- 6 of 10 of world’s top spammers agreed to stop sending spam to users of Blue Frog
The Rise and Fall of Blue Security
Part II: The Fall

- One spammer (PharmaMaster) started sending Blue Frog users 10-20 times more spam
- PharmaMaster then launched DDoS attacks on Blue Security and its business customers
- Blue Security could not protect its customers from DDoS attacks and virus-laced emails
- Blue Security reluctantly terminated its anti-spam activities
Politically Motivated Cyber Attacks

- Estonia (2007)
- Georgia (2008)
- Georgia (2009)
- Exiled Tibetan Government (2009)
- United States and South Korea (2009)
- Iran (2009)
- Espionage attributed to People’s Liberation Army
- Anonymous
Attacks on Twitter and Other Social Networking Sites

- Massive DDoS attack made Twitter service unavailable for several hours on August 6, 2009
- Three other sites attacked at same time: Facebook, LiveJournal, and Google
- All sites used by a political blogger from the Republic of Georgia
- Attacks occurred on first anniversary of war between Georgia and Russia over South Ossetia
Fourth of July Attacks

- 4th of July weekend in 2009: DDoS attack on governmental agencies and commercial Web sites in United States and South Korea
- Attack may have been launched by North Korea in retaliation for United Nations sanctions
Supervisory Control and Data Acquisition (SCADA) Systems

- Industrial processes require constant monitoring
- Computers allow automation and centralization of monitoring
- Today, SCADA systems are open systems based on Internet Protocol
 - Less expensive than proprietary systems
 - Easier to maintain than proprietary systems
 - Allow remote diagnostics
- Allowing remote diagnostics creates security risk
SCADA Systems Carry Security Risks
Stuxnet Worm (2009)

- Attacked SCADA systems running Siemens software
- Targeted five industrial facilities in Iran that were using centrifuges to enrich uranium
- Caused temporary shutdown of Iran’s nuclear program
- Worm may have been created by Israeli Defense Forces
Cyber Espionage Attributed to People’s Liberation Army

- Hundreds of computer security breaches in more than a dozen countries investigated by Mandiant
- Hundreds of terabytes of data stolen
- Mandiant blamed Unit 61398 of the People’s Liberation Army
- China’s foreign ministry stated that accusation was groundless and irresponsible
Anonymous

- Anonymous: loosely organized international movement of hacktivists (hackers with a social or political cause)
- Various DDoS attacks attributed to Anonymous members

<table>
<thead>
<tr>
<th>Year</th>
<th>Victim</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Church of Scientology</td>
<td>Attempted suppression of Tom Cruise interview</td>
</tr>
<tr>
<td>2009</td>
<td>RIAA, MPAA</td>
<td>RIAA, MPAA’s attempt to take down the Pirate Bay</td>
</tr>
<tr>
<td>2009</td>
<td>PayPal, VISA, MasterCard</td>
<td>Financial organizations freezing funds flowing to Julian Assange of WikiLeaks</td>
</tr>
<tr>
<td>2012</td>
<td>U.S. Dept. of Justice, RIAA, MPAA</td>
<td>U.S. Dept. of Justice action against Megaupload</td>
</tr>
</tbody>
</table>
7.5 Online Voting
Motivation for Online Voting

- 2000 U.S. Presidential election closely contested
- Florida pivotal state
- Most Florida counties used keypunch voting machines
- Two voting irregularities traced to these machines
 - Hanging chad
 - “Butterfly ballot” in Palm Beach County
The Infamous “Butterfly Ballot”
Benefits of Online Voting

• More people would vote
• Votes would be counted more quickly
• No ambiguity with electronic votes
• Cost less money
• Eliminate ballot box tampering
• Software can prevent accidental over-voting
• Software can prevent under-voting
Risks of Online Voting

- Gives unfair advantage to those with home computers
- More difficult to preserve voter privacy
- More opportunities for vote selling
- Obvious target for a DDoS attack
- Security of election depends on security of home computers
- Susceptible to vote-changing virus or RAT
- Susceptible to phony vote servers
- No paper copies of ballots for auditing or recounts
Utilitarian Analysis

• Suppose online voting replaced traditional voting
• Benefit: Time savings
 – Assume 50% of adults actually vote
 – Suppose voter saves 1 hour by voting online
 – Average pay in U.S. is $21.00 / hour
 – Time savings worth $10.50 per adult American
• Harm of DDoS attack difficult to determine
 – What is probability of a DDoS attack?
 – What is the probability an attack would succeed?
 – What is the probability a successful attack would change the outcome of the election?
Kantian Analysis

- The will of each voter should be reflected in that voter’s ballot
- The integrity of each ballot is paramount
- Ability to do a recount necessary to guarantee integrity of each ballot
- There should be a paper record of every vote
- Eliminating paper records to save time and/or money is wrong
Conclusions

- Existing systems are highly localized
- Widespread tainting more possible with online system
- No paper records with online system
- Evidence of tampering with online elections
- Relying on security of home computers means system vulnerable to fraud
- Strong case for not allowing online voting