Everything you ever wanted (or didn’t want) to know about FORM DRAG

Sally Warner (a.k.a. The Form Dragon)

tOASTER
February 20, 2009
Friday Harbor Labs, San Juan Island, WA
Once upon a time...

I was an engineer.
The coolest thing I learned:

Dimples on golf balls make them fly further than smooth ones.
What is form drag?

Form drag = pressure × area

\[F = - \int_{A_0} p_B \frac{\partial h}{\partial x} dA_0 \]

- streamlined body: small form drag
- blunt body: large form drag
The easier way:

\[F = \frac{1}{2} C_D \rho A u^2 \]

- \(F \) = force
- \(\rho \) = density
- \(A \) = frontal area
- \(C_D \) = drag coefficient
Everything has a drag coefficient...
Really, everything...

Ford Model T
$C_D = 0.8$

Toyota Prius
$C_D = 0.26$
Really, everything...

Eiffel Tower
$C_D = 1.9$

Empire State Bldg
$C_D = 1.4$
Really, everything...

Birds

\[C_D = 0.3-0.4 \]

Dolphins

\[C_D = 0.0036 \]
Really, everything...

Ski jumper
$C_D = 1.0$

Bicyclist and bicycle
$C_D = 1.1$
... except for ocean topography

(this is where I come in)
Frictional Drag

\[F = - \int_{A_0} p_B \frac{\partial h}{\partial x} dA_0 \]

With \(C_D = 7 \)

Edwards et al., 2004; McCabe et al., 2006
Form drag in the ocean

Steady flow over Stonewall Bank:

interior form drag
11-18 x 10^6 N

Moum and Nash, 2000; Nash and Moum, 2001

Oscillating flow at Three Tree Point:

interior form drag
20-50 x 10^6 N

Edwards et al., 2004; McCabe et al., 2006
Can we measure the total \textit{in situ} form drag?

(and then calculate C_D)
Cruise plan

- ADCP and PPOD
- PPOD only
ROMS model

Top view of bathymetry

Side view of salinity anomaly
Why care?

Accurate drag coefficients will improve:

- the performance of large scale numerical models.

- our ability to calculate the ocean’s energy budget.
Conclusions

- Drag coefficient have been calculated for nearly everything except ocean topography.

- Our long-term goal is to get accurate drag coefficients for the entire ocean — we’ll start with Three Tree Point.

- Research is slow.