Math 252H - 39274 - Integral Calculus (4)
Syllabus - OSU - Winter 2016

Instructor: Filix Maisch e-mail: maischf@math.oregonstate.edu
Meetings: MF 1 - 1:50 PM and W 12 - 1:50 PM
Room: LINC 345 office: BEXL 429 / KIDD 348 Off. hrs: MW 9:30 - 10:50 AM
Text: Calculus, Early Transcendentals, Briggs, Cochran, et al. (2nd edition)
Web: people.oregonstate.edu/~maischf/

Enforced Prerequisites: Math 251 or 251H with a C- or better or instructor permission
(and Honors College approval).

Attendance: Regular attendance to lecture and recitation is expected.

Honor Code: Students are expected to be familiar with Oregon State University’s Expectations for Student Conduct. Please review these at the following web link:
http://studentlife.oregonstate.edu/studentconduct/

Accommodations: Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through
DAS are responsible for contacting the faculty member in charge of the course prior to or
during the first week of the term. Students who believe they are eligible for accommodations
should contact DAS immediately at 737-4098.

Course Description: This course covers definite and indefinite integrals, integral tables,
basic techniques of integration, the calculus of logarithmic and exponential functions, polar
coordinates, and applications of integration to areas, volumes, force, work, and growth and
decay problems.

Schedule: See web for tentative term schedule.

Evaluation: Your grade is determined by online homework, group work, two evening
midterms, and a final. Your final performance, scaled from 200 to 100, can replace the
worst of your two midterms. Here is the point breakdown:

• Homework 50 (Take your avg. homework percentage of 50 and round up.)
• Group Work 50 (Top 5 of 7 group work activities worth 10 points each.)
• Midterm 1 100 (Jan. 27th, in-class – last 80 min.)
• Midterm 2 100 (Feb. 17th, in-class – last 80 min.)
• Final 200 (12 – 1:50 PM, Monday, March 14th, LINC 345)

Grades will not be harder than:
450 - 500 A/A-, 400 - 449 B+/B/B-, 350 - 399 C+/C, 300 - 349 D, 0 - 299 F.

I DO NOT USE CANVAS. At the end of this syllabus you have a page on which you can record your scores.
Homework: Homework is online through www.mymathlab.com. On the web page there is also a list of suggested exercises from the text for extra practice and for studying for exams. Usually you get 3 attempts for credit. Late homework can be completed for a 10% penalty.

Course ID: maisch65335

Name: Math252_Winter2016

Resources: The Math Learning Center is in Kidder 108H and is a great place to drop in for help. It is open from 9 AM to 4 PM, Monday through Friday, from the second week onward. I volunteer there for an hour on Fridays at 10 AM. Treat this as an additional office hour.

Tests: Note that no calculators of any kind are allowed on either midterm nor the final. You are allowed both sides of one 3x5 inch handwritten note card for each midterm and both sides of one 4x6 inch handwritten note card for the final. Your final exam (scaled) can replace your worst midterm if your performance on the final is better than your worst midterm. Tests are not allowed to be made-up unless the circumstances are truly exceptional and contact requesting the accommodation is made PRIOR to the test.

Recitation Group Work: Most weeks during the Friday’s meeting you will be asked to complete a group-work activity worth 10 points in groups of 2 − 4, due at the start of the following week’s Friday. See the term calendar. Every group member individually is required to submit an activity. It is your responsibility to print the activities from the course web page and to bring them to class. The lowest two (of 7) activities will be dropped.

Specific Learning Outcomes: A successful student in Math 252 will be able to...

1. Describe the definite integral as a limit of Riemann sums and illustrate and interpret definite integrals as areas and signed areas.

2. Apply the Fundamental Theorem of Calculus to evaluate integrals and to differentiate integrals with respect to a limit of integration.

3. Use integration in applications, such as to find areas and volumes of regions and to calculate physical quantities such as total distance traveled, displacement, work, and center of mass.

4. Evaluate integrals using basic numerical integration rules.

5. Use first order differential equations to model and solve problems of growth and decay, cooling, and mixing.
Write down your scores!

(1) Group Worksheet 1 :out of 10
(2) Group Worksheet 2 :out of 10
(3) Group Worksheet 3 :out of 10
(4) Midterm 1 :out of 100
(5) Group Worksheet 4 :out of 10
(6) Group Worksheet 5 :out of 10
(7) Midterm 2 :out of 100
(8) Group Worksheet 6 :out of 10
(9) Group Worksheet 7 :out of 10
(10) Best 5 of 7 Group Worksheets:out of 50
(11) Homework:out of 50
(12) Final:out of 200