Know how to solve?

(b) When the solution of a number is not real, you reduce the equation for w to one you obtain a quadratic equation for w.

(c) In the quadratic equation $ax^2 + bx + c = 0$ in the variable w, a, b, and c are complex numbers.

(d) Let x be a complex number. If $x = 0$, there is no solution.

(e) To find the solutions, you reduce the equation to a general quadratic equation and then solve it.

(f) The following steps reduce the solution of a general quadratic equation to a quadratic equation for w.

(g) First, you find the square root of the expression that gives the solutions.

(h) Then, you find the roots of w by the quadratic equation.

(i) Finally, you find the solutions of the equation.

(j) If you have more complex numbers, you can solve by the following steps:

I. Let b be a given complex number. Show by the following steps that the equation $w^2 + b = 0$ has exactly two solutions.

2. To find the solutions of $w^2 = z$, whose coefficients may be real or complex numbers, you can use the quadratic formula.

3. The following steps reduce the equation to a quadratic equation for w.

4. Once you have the solutions of $w^2 = z$, you can find the solutions of the equation.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Complex Numbers and the Complex Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Project:</td>
<td>A Group Projects</td>
</tr>
</tbody>
</table>
3. Let z and c be complex numbers.

The quadratic formula

\[\text{Appendix A: Lab/Recitation Projects} \]